Cyclical Gel-Polymer Flooding Technology is an Effective Method of Enhanced Oil Recovery in High-Viscosity Oil Fields

2020 ◽  
Author(s):  
Svetlana Yur’evna Lobanova ◽  
Berdibek Ulanovich Yelubaev ◽  
Nikolay Evgen’evich Talamanov ◽  
Zhijian Sun ◽  
Chunxi Wang ◽  
...  
2020 ◽  
Author(s):  
Svetlana Yur’evna Lobanova ◽  
Berdibek Ulanovich Yelubaev ◽  
Nikolay Evgen’evich Talamanov ◽  
Zhijian Sun ◽  
Chunxi Wang ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
pp. 61-74
Author(s):  
F. E. Safarov ◽  
S. Yu. Lobanova ◽  
B. Ye. Yelubaev ◽  
N. E. Talamanov ◽  
Sun Zhijian ◽  
...  

The presented work discusses increasing oil recovery factor using physicochemical EOR methods. This article presents the field pilot tests results related to cyclical gel polymer flooding technology as applied under the conditions productive reservoirs rich in high-viscosity oils (viscosity in reservoir conditions above 300 mPa s) of the Buzachi North oil field, extending the boundaries of application of these methods. The work used the methods of hydrodynamic modeling, mathematical analysis; the necessary parameters of fractures and super reservoirs for calculating the working volumes of the injected compositions were estimated using tracer studies.


2021 ◽  
Author(s):  
M.G. Persova ◽  
Yu.G. Soloveichik ◽  
A.S. Ovchinnikova ◽  
D.S. Kiselev ◽  
I.I. Patrushev

Author(s):  
G.Zh. Moldabayeva ◽  
◽  
A.Kh. Agzamov ◽  
R.T. Suleimenova ◽  
D.K. Elefteriadi ◽  
...  

This article discusses a digital geological model, the transfer of borehole data to the geological grid, and the modeling of the technology of alternating steam and water injection. Alternating injection involves the cyclic injection of steam and water into an injection well in high-viscosity oil fields. The essence of this technology is that during the steam injection for 2-4 months, the formation warms up, leading to a decrease in viscosity and an increase in oil mobility. Then comes the period of water injection, during which the production of already warmed oil continues and the formation pressure is maintained. For digital geological modeling, the following data were collected, processed and prepared: a list of wells that open the object of modeling, coordinates of wellheads, well altitudinal data, inclinometry of well trajectories, GМS data on wells, analysis of wells drilled with core sampling, and digitized seismic data (structural surfaces on the roof of stratigraphic horizons, parameter maps, contact surfaces, faults, structural maps on the roof of target horizons with faults, isochron maps, velocity maps).


Georesursy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 103-113 ◽  
Author(s):  
Lyubov K. Altunina ◽  
Vladimir A. Kuvshinov ◽  
Lyubov A. Stasyeva ◽  
Ivan V. Kuvshinov

Physicochemical aspects of enhanced oil recovery (EOR) from heavy high-viscosity deposits, developed in natural mode and combined with thermal methods, using systems based on surface-active substances (surfactants), coordinating solvents and complex compounds are considered, which chemically evolve in situ to acquire colloidal-chemical properties that are optimal for oil displacement. Thermobaric reservoir conditions, interactions with reservoir rock and fluids are the factors causing the chemical evolution of the systems. To enhance oil recovery and intensify the development of high-viscosity deposits, acid oil-displacing systems of prolonged action based on surfactants, inorganic acid adduct and polyatomic alcohol have been created. As a result of experimental studies of acid-base equilibrium in the systems with donor-acceptor interactions – polybasic inorganic acid and polyol, the influence of electrolytes, non-electrolytes and surfactants, the optimal compositions of the systems were selected, as well as concentration ranges of the components in the acid systems. When the initially acid system interacts with the carbonate reservoir to release CO2, the oil viscosity decreases 1.2-2.7 times, the pH of the system rises and this system evolves chemically turning into an alkaline oil-displacing system. As a result it provides effective oil displacement and prolonged reservoir stimulation. The system is compatible with saline reservoir waters, has a low freezing point (minus 20 ÷ minus 60 oC), low interfacial tension at the oil boundary and is applicable in a wide temperature range, from 10 to 200 oC. In 2014-2018 field tests of EOR technologies were successfully carried out to intensify oil production in the test areas of the Permian-Carboniferous deposit of high-viscosity oil in the Usinsk oil field, developed in natural mode and combined with thermal-steam stimulation, using the acid oil-displacing system based on surfactants, coordinating solvents and complex compounds. The pilot tests proved high efficiency of EOR technologies, as far as the oil production rate significantly increased, water cut decreased to intensify the development. The EOR technologies are environmentally safe and technologically effective. Commercial use of the EOR is promising for high-viscosity oil deposits.


2018 ◽  
Vol 11 (4) ◽  
pp. 462-476 ◽  
Author(s):  
Altunina Lyubov K. ◽  
◽  
Kuvshinov Vladimir A. ◽  
Kuvshinov Ivan V. ◽  
Stasyeva Liubov A. ◽  
...  

Author(s):  
M G Persova ◽  
Y G Soloveichik ◽  
A S Ovchinnikova ◽  
I I Patrushev ◽  
A V Nasybullin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document