Analysis of Pressure Interference Tests in Unconventional Gas Reservoirs: A Gas Condensate Example from Montney Formation

2021 ◽  
Author(s):  
Behjat Haghshenas ◽  
Farhad Qanbari

Abstract Characterization of hydraulic fracture system in multi-fractured horizontal wells (MFHW) is one of the key steps in well spacing optimization of tight and shale reservoirs. Different methods have been proposed in the industry including core-through, micro-seismic, off-set pressure data monitoring during hydraulic fracturing, pressure depletion mapping, rate-transient analysis, pressure-transient analysis, and pressure interference test. Pressure interference test for a production and monitoring well pair includes flowing the production well at a stable rate while keeping the monitoring well shut-in and recording its pressure. In this study, the coupled flow of gas in hydraulic fractures and matrix systems during pressure interference test is modeled using an analytical method. The model is based on Laplace transform combined with pseudo-pressure and pseudo-time. The model is validated against numerical simulation to make sure the inter-well communication test is reasonably represented. Two key parameters were introduced and calculated with time using the analytical model including pressure drawdown ratio and pressure decline ratio. The model is applied to two field cases from Montney formation. In this case, two wells in the gas condensate region of Montney were selected for a pressure interference test. The monitoring well was equipped with downhole gauges. As the producing well was opened for production, the bottom-hole pressure of the monitoring well started declining at much lower rate than the production well. The pressure decline rate in the monitoring well eventually approached that of the producing well after days of production. This whole process was modeled using the analytical model of this study by adjusting the conductivity of the communicating fractures between the well pairs. This study provides a practical analytical tool for quantitative analysis of the interference test in MFHWs. This model can be integrated with other tools for improved characterization of hydraulic fracture systems in tight and shale reservoirs.




2017 ◽  
Author(s):  
M. Ibrahim ◽  
C. Pieprzica ◽  
E. Vosburgh ◽  
A. Dabral ◽  
O. Olayinka ◽  
...  


2016 ◽  
Vol 7 ◽  
Author(s):  
Steven J. Robbins ◽  
Paul N. Evans ◽  
Donovan H. Parks ◽  
Suzanne D. Golding ◽  
Gene W. Tyson


2008 ◽  
Vol 49 (3) ◽  
pp. 454-461
Author(s):  
O. Yu. Dinariev ◽  
N. V. Evseev




2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.



Author(s):  
Fadila Bessa ◽  
Kanay Jerath ◽  
Chris Ginn ◽  
Patrick Johnston ◽  
Yu Zhao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document