Delivering Pressure Transient Analysis During Drawdown on ESP Wells: Case Studies and Lessons Learned

2021 ◽  
Author(s):  
Lawrence Camilleri ◽  
Mohammed Al-Jorani ◽  
Mohammed Kamal Aal Najar ◽  
Joseph Ayoub

Abstract While pressure transient analysis (PTA) is a proven interpretation technique, it is mostly used on buildups because drawdowns are difficult to interpret. However, the deferred production associated with buildups discourages regular application of PTA to determine skin and identify boundary conditions. Several case studies are presented covering a range of well configurations to illustrate how downhole transient liquid rate measurements with electrical submersible pump (ESP) gauges enable PTA during drawdown and therefore real-time optimization. The calculation of high-frequency transient flow rates using ESP gauge real-time data is based on the principle that the power absorbed by the pump is equal to that generated by the motor. This technique is independent of fluid specific gravity and therefore is self-calibrating with changes in water cut and phase segregation. Analytical equations ensure that the physics is always respected, thereby providing the necessary repeatability. The combination of downhole transient high-frequency flow rate and permanent pressure gauge data enables PTA using commonly available analytical techniques and software, especially because superposition time is calculated accurately. The availability of continuous production history brings significant value for PTA. It makes it possible to perform history matching and to deploy semilog analysis using an accurate set of superposition time functions. However, the application of log-log analysis techniques is usually more challenging because of imperfections in input data such as noise, oversimplified production history, time-synchronization issues, or wellbore effects. These limitations are solved by utilizing high-frequency downhole data from ESP. This is possible first as superposition time is effectively an integral function, which dampens any noise in the flow rate signal. Another important finding is that wellbore effects in subhydrostatic wells are less impactful in drawdowns than in buildups where compressibility and redistribution can mask reservoir response. Key reservoir properties, in particular mobility, can nearly always be estimated, leading to better skin factor determination even without downhole shut-in. Finally, with the constraint of production deferment eliminated, drawdowns can be monitored for extended durations to identify boundaries and to perform time-lapse interpretation more efficiently. Confirming a constant pressure boundary or a change in skin enables more effective and proactive production management. In all cases considered, a complete analysis was possible, including buildup and drawdown data comparison. With the development of downhole flow rate calculation technology, it is now possible to provide full inflow characterization in a matter of days following an ESP workover, without any additional hardware or staff mobilization to the wellsite and no deferred production. More importantly, the technique provides the necessary information to diagnose the cause of underproduction, identify stimulation candidates, and manage drawdown.

Author(s):  
H. A. Warda ◽  
I. G. Adam ◽  
A. B. Rashad

In the present study, a more realistic approach for using pressure transient analysis in leak detection and localization is proposed. In a previous publication [1] by the authors, the feasibility of using pressure transients, generated by full closure of a downstream solenoid control ball valve, in leak detection and localization is investigated. The main shortcoming of using the full closure of a downstream valve is the very high pressure rise that may reach 14 times the operating pressure. Also, full valve closure yields to discontinue the whole pipeline flow. In the present paper, a controlled partial downstream or upstream valve closure is used as a mean of generating pressure transients to overcome the above drawbacks. The percentage of the valve closure is controlled to reduce the pipeline flow rate by 20–80%. Pressure transients generated by a partial valve closure are investigated experimentally and numerically. The experimental setup consists of a 60 m long and 25.4 mm internal diameter PVC pipelines connecting two tanks. Leaks are simulated at different locations along the pipeline to investigate the effect of leak positions. The pressure time history is recorded using piezoelectric pressure transducers located at five equidistance points along the pipeline connected to a Data Acquisition System. Experiments are carried out for different leak quantities ranging from 2% to 20% of the pipe flow rate. The numerical model accounts for complex pipe characteristics, such as unsteady friction and viscoelastic behavior of pipe walls. The leak is treated as a flow through an orifice of prescribed size. The numerical model is experimentally verified to insure the capability of the model in accounting for unsteady and viscoelastic complex phenomena and efficiently simulating pressure transients in the presence of a leak.


2013 ◽  
Vol 04 (08) ◽  
pp. 1186-1192
Author(s):  
Kanya Khatri ◽  
Sadiq A. Shah ◽  
Agha F. H. Pathan ◽  
Bilal Shams ◽  
Ashfaque A. Memon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document