Tensile Failure and Fracture Width of Partially Permeable Wellbores with Applications in Lost Circulation Material Design

SPE Journal ◽  
2021 ◽  
pp. 1-23 ◽  
Author(s):  
Kien Nguyen ◽  
Amin Mehrabian ◽  
Ashok Santra ◽  
Dung Phan

Summary Estimation of near-wellbore fracture widths remains central to designing the particle size distribution (PSD) and composition of lost circulation material (LCM) blends. Although elastic rock models are often used for this purpose, they fall short in capturing the substantial effect of pore fluid pressure on the fracture width. The problem is addressed in this paper by incorporating the poroelastic back stress in width estimation of axial fractures nearby an inclined wellbore. The poroelastic back stress is caused by a nonideal drilling fluid filter cake allowing for fluid pressure communication between the wellbore and pore space of the rock surrounding the wellbore. In this aspect, a proper definition of the filter-cake efficiency is made in terms of the wellbore pressure, far-field pore fluid pressure, and pore fluid pressure of the rock surrounding the wellbore. The value of this parameter is estimated from the standard drilling fluid filtration test results, as well as the formation rock permeability. The filter-cake efficiency is next used to develop the long-time, asymptotic analytical solution for the poroelastic stress of an inclined wellbore. By accounting for the obtained poroelastic back stress, an improved estimation of the wellbore tensile limit that depends on the filter-cake efficiency parameter is developed. For wellbore pressures beyond the wellbore tensile limit, the width of the near-wellbore fractures is estimated. The fracture width estimation is made through an analytical, dislocation-based fracture mechanics solution to the integral equation describing the nonlocal stress equilibrium along the fracture faces. The commonly practiced scheme for geometric design of LCM blends is enhanced by using the presented improvement in estimation of the near-wellbore fracture width. A case study is used to demonstrate the substantial effect of drilling fluid filtration properties and the resulting poroelastic back stress on the wellbore tensile limit, estimated fracture width, and consequently, composition of the recommended LCM blend.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


2019 ◽  
Vol 767 ◽  
pp. 228168 ◽  
Author(s):  
Melodie E French ◽  
Greg Hirth ◽  
Keishi Okazaki

2012 ◽  
Vol 117 (B5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Luca Malagnini ◽  
Francesco Pio Lucente ◽  
Pasquale De Gori ◽  
Aybige Akinci ◽  
Irene Munafo'

Geology ◽  
2018 ◽  
Vol 46 (4) ◽  
pp. 299-302 ◽  
Author(s):  
Jiyao Li ◽  
Donna J. Shillington ◽  
Demian M. Saffer ◽  
Anne Bécel ◽  
Mladen R. Nedimović ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1784 ◽  
Author(s):  
Heping Shu ◽  
Jinzhu Ma ◽  
Haichao Yu ◽  
Marcel Hürlimann ◽  
Peng Zhang ◽  
...  

Debris flows that involve loess material produce important damage around the world. However, the kinematics of such processes are poorly understood. To better understand these kinematics, we used a flume to measure the kinematics of debris flows with different mixture densities and weights. We used sensors to measure pore fluid pressure and total normal stress. We measured flow patterns, velocities, and depths using a high-speed camera and laser range finder to identify the temporal evolution of the flow behavior and the corresponding peaks. We constructed fitting functions for the relationships between the maximum values of the experimental parameters. The hydrographs of the debris flows could be divided into four phases: increase to a first minor peak, a subsequent smooth increase to a second peak, fluctuation until a third major peak, and a final continuous decrease. The flow depth, velocity, total normal stress, and pore fluid pressure were strongly related to the mixture density and total mixture weight. We defined the corresponding relationships between the flow parameters and mixture kinematics. Linear and exponential relationships described the maximum flow depth and the mixture weight and density, respectively. The flow velocity was linearly related to the weight and density. The pore fluid pressure and total normal stress were linearly related to the weight, but logarithmically related to the density. The regression goodness of fit for all functions was >0.93. Therefore, these functions are accurate and could be used to predict the consequences of loess debris flows. Our results provide an improved understanding of the effects of mixture density and weight on the kinematics of debris flows in loess areas, and can help landscape managers prevent and design improved engineering solutions.


2019 ◽  
Vol 124 (9) ◽  
pp. 9526-9545 ◽  
Author(s):  
Tiange Xing ◽  
Wenlu Zhu ◽  
Melodie French ◽  
Ben Belzer

Sign in / Sign up

Export Citation Format

Share Document