The Advantages of Having Dedicated Downhole Gauges and Wellhead Meter: A Reservoir Management Perspective from a Massive Tight Gas Reservoir in the Remote Area

2021 ◽  
Author(s):  
Ricko Rizkiaputra ◽  
Satrio Goesmiyarso ◽  
Jufenilamora Nurak ◽  
Krishna Pratama Laya ◽  
Dimmas Ramadhan ◽  
...  

Abstract Even though the downhole gauges and wellhead meter (wet gas meter) have been invented decades ago, having them installed in every wells are still considered as a luxury for many companies. However, does this view still reasonable for a tight gas reservoir let alone located in a remote area? This study will describe the benefit of having both equipment for reservoir management practice in one of the biggest tight gas reservoirs in Indonesia. Generally, reservoir management is an iterative process that incorporates the analysis of reservoir characterization, development plan, implementation, and monitoring. There are many analyses from the reservoir management process that can be performed using above mentioned equipment. Several analyses have been performed, such as: (i) Interference Test and Pressure Transient Analysis (PTA) after well is completed; (ii) Evolution of connected volume since early production until present day using Dynamic Material Balance (DMB); (iii) Flow regime and reservoir properties using Rate Transient Analysis (RTA); and (iv) Reservoir simulation: regular model update and project opportunity identification. In this study, the above-mentioned analyses are performed in one of the massive tight gas reservoir in Indonesia that is located in the remote area. Having a complete reservoir surveillance tools such as downhole gauges and wellhead meter on each wells is beneficial for reservoir management practice. Precious subsurface data can be obtained anytime without having to wait for equipment mobilization to location. This is critical for managing tight gas reservoir which usually demands robust subsurface data to reduce its uncertainties. There are several findings based on the above mentioned analyses, such as: (i) The interference test indicates there is reservoir connectivity among the production wells; (ii) The PTA indicates that the reservoir has tight properties, although longer buildup/observation time is still needed to better understand the reservoir characteristics in wider scale; (iii) The DMB analysis can be performed even in daily basis to provide the insight on connected gas initial in place (GIIP) evolution through time, as in this case it still shows an increasing GIIP through time which is suspected due to the transient flow regime on the wells; (iv) The RTA can also be performed in similar fashion, if it is combine with other analyses, this analysis able to provide a multi-scale reservoir properties investigation from near wellbore to far field and flow period observation (boundary observation) through time, as in this case the reservoir properties is tight and flow is still in transient period; (v) It increases robustness of reservoir simulation update since it is supported by many analyses, as such, series of hopper can be confidently presented to management, as in this case a project of well stimulation (Acid Fracturing) has been performed successfully and opportunity of further field development plan can be identified. This paper shows that, for the tight reservoir in the remote location, having each well equipped with downhole gauges and dedicated wellhead meter is significantly increasing the robustness of reservoir management process. Thus, providing economic optimization for the managed asset. Regarding the capital that is invested at the beginning, it will simply pay out quickly, looking at the time and resources that need to be spent for having equipment on site.

2021 ◽  
Vol 804 (2) ◽  
pp. 022046
Author(s):  
Wanneng Zhang ◽  
Zhaoyuan Cheng ◽  
Hanlie Cheng ◽  
Qiang Qin ◽  
Minghao Wang

SPE Journal ◽  
2016 ◽  
Vol 22 (03) ◽  
pp. 924-939 ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Shuang Li ◽  
Yao Huang ◽  
Jiazheng Qin ◽  
...  

Summary The increasing activities in tight reservoir exploitation through fractured wells have attracted interests of pressure-transient analysis (PTA) for well-performance evaluation. The production rates of different fractures were assumed to be equal in previous models. However, different fractures have unequal contributions to the total-gas-production rate because of the differences of fracture scale (e.g., half-length, height), heterogeneity of gas saturation, formation damage, and fracture closure. This paper considers the effect of unequal gas-production rate of each fracture (UGPREF) on pressure-transient behaviors, and develops a semianalytical methodology to diagnose the specific locations of underperforming fractures through PTA by use of bottomhole-pressure (BHP) data. First, new semianalytical solutions of a multifractured horizontal well (MFHW) in a tight gas reservoir are derived on the basis of the Green function (Gringarten and Ramey 1973) and Newman product method (Newman 1936). Second, the model is validated by comparison with the numerical model in KAPPA Ecrin (Saphir) software (Essca 2011). Third, type curves are developed, and sensitivity analysis is further investigated. Results show that there exist clear distinctions among these type curves between equal gas-production rate of each fracture (EGPREF) and UGPREF. The early radial flow is distinguishable and behaves as a horizontal line with the value of 0.5/N* (N* = N for EGPREF, N*≠N for UGPREF) in the pseudopressure-derivative curves when the interferences between fractures do not overlap this period. If the early-radial flow was mistakenly regarded as pseudoradial flow, the interpreted permeability would be N* times smaller than the accurate result. Furthermore, the methodology is applied to a field case of the Daniudi tight gas reservoir in the Ordos Basin, which illustrates its physical consistency and practicability to diagnose the specific locations of underperforming hydraulic fractures through pressure-history matching. It also provides feasible references for reservoir engineers in well-performance evaluation and field strategy (e.g., refracturing, acidizing, or other stimulation treatments) to enhance hydrocarbon production.


Sign in / Sign up

Export Citation Format

Share Document