A Semianalytical Methodology To Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir

SPE Journal ◽  
2016 ◽  
Vol 22 (03) ◽  
pp. 924-939 ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Shuang Li ◽  
Yao Huang ◽  
Jiazheng Qin ◽  
...  

Summary The increasing activities in tight reservoir exploitation through fractured wells have attracted interests of pressure-transient analysis (PTA) for well-performance evaluation. The production rates of different fractures were assumed to be equal in previous models. However, different fractures have unequal contributions to the total-gas-production rate because of the differences of fracture scale (e.g., half-length, height), heterogeneity of gas saturation, formation damage, and fracture closure. This paper considers the effect of unequal gas-production rate of each fracture (UGPREF) on pressure-transient behaviors, and develops a semianalytical methodology to diagnose the specific locations of underperforming fractures through PTA by use of bottomhole-pressure (BHP) data. First, new semianalytical solutions of a multifractured horizontal well (MFHW) in a tight gas reservoir are derived on the basis of the Green function (Gringarten and Ramey 1973) and Newman product method (Newman 1936). Second, the model is validated by comparison with the numerical model in KAPPA Ecrin (Saphir) software (Essca 2011). Third, type curves are developed, and sensitivity analysis is further investigated. Results show that there exist clear distinctions among these type curves between equal gas-production rate of each fracture (EGPREF) and UGPREF. The early radial flow is distinguishable and behaves as a horizontal line with the value of 0.5/N* (N* = N for EGPREF, N*≠N for UGPREF) in the pseudopressure-derivative curves when the interferences between fractures do not overlap this period. If the early-radial flow was mistakenly regarded as pseudoradial flow, the interpreted permeability would be N* times smaller than the accurate result. Furthermore, the methodology is applied to a field case of the Daniudi tight gas reservoir in the Ordos Basin, which illustrates its physical consistency and practicability to diagnose the specific locations of underperforming hydraulic fractures through pressure-history matching. It also provides feasible references for reservoir engineers in well-performance evaluation and field strategy (e.g., refracturing, acidizing, or other stimulation treatments) to enhance hydrocarbon production.

2014 ◽  
Vol 17 (02) ◽  
pp. 209-219 ◽  
Author(s):  
H.. Luo ◽  
G.F.. F. Mahiya ◽  
S.. Pannett ◽  
P.. Benham

Summary The evaluation of expected ultimate recovery (EUR) for tight gas wells has generally relied upon the Arps equation for decline-curve analysis (DCA) as a popular approach. However, it is typical in tight gas reservoirs to have limited production history that has yet to reach boundary-dominated flow because of the low permeability of such systems. Commingled production makes the situation even more complicated with multiboundary behavior. When suitable analogs are not available, rate-transient analysis (RTA) can play an important role to justify DCA assumptions for production forecasting. The Deep-basin East field has been developed with hydraulically fractured vertical wells through commingled production from multiple formations since 2002. To evaluate potential of this field, DCA type curves for various areas were established according to well performance and geological trending. Multiple-segment DCA methodology demonstrated reasonable forecasts, in which one Arps equation is used to describe the rapidly decreasing transient period in early time and another equation is used for boundary-dominated flow. However, a limitation of this approach is the uncertainty of the forecast in the absence of extended production data because the EUR can be sensitive to adjustments in some assumed DCA parameters of the second segment. In this paper, we used RTA to assess reservoir and fracture properties in multiple layers and built RTA-type well models around which uncertainty analyses were performed. The distributions of the model properties were then used in Monte Carlo analysis to forecast production and define uncertainty ranges for EUR and DCA parameters. The resulting forecasts and EUR distribution from RTA modeling generally support the DCA assumptions used for the type curves for corresponding areas of the field. The study also showed how the contribution from the various commingled layers changes with time. The proposed workflow provides a fit-for-purpose way to quantify uncertainties in tight gas production forecasting, especially for cases when production history is limited and field-level numerical simulation is not practicable.


2021 ◽  
Author(s):  
Ricko Rizkiaputra ◽  
Satrio Goesmiyarso ◽  
Jufenilamora Nurak ◽  
Krishna Pratama Laya ◽  
Dimmas Ramadhan ◽  
...  

Abstract Even though the downhole gauges and wellhead meter (wet gas meter) have been invented decades ago, having them installed in every wells are still considered as a luxury for many companies. However, does this view still reasonable for a tight gas reservoir let alone located in a remote area? This study will describe the benefit of having both equipment for reservoir management practice in one of the biggest tight gas reservoirs in Indonesia. Generally, reservoir management is an iterative process that incorporates the analysis of reservoir characterization, development plan, implementation, and monitoring. There are many analyses from the reservoir management process that can be performed using above mentioned equipment. Several analyses have been performed, such as: (i) Interference Test and Pressure Transient Analysis (PTA) after well is completed; (ii) Evolution of connected volume since early production until present day using Dynamic Material Balance (DMB); (iii) Flow regime and reservoir properties using Rate Transient Analysis (RTA); and (iv) Reservoir simulation: regular model update and project opportunity identification. In this study, the above-mentioned analyses are performed in one of the massive tight gas reservoir in Indonesia that is located in the remote area. Having a complete reservoir surveillance tools such as downhole gauges and wellhead meter on each wells is beneficial for reservoir management practice. Precious subsurface data can be obtained anytime without having to wait for equipment mobilization to location. This is critical for managing tight gas reservoir which usually demands robust subsurface data to reduce its uncertainties. There are several findings based on the above mentioned analyses, such as: (i) The interference test indicates there is reservoir connectivity among the production wells; (ii) The PTA indicates that the reservoir has tight properties, although longer buildup/observation time is still needed to better understand the reservoir characteristics in wider scale; (iii) The DMB analysis can be performed even in daily basis to provide the insight on connected gas initial in place (GIIP) evolution through time, as in this case it still shows an increasing GIIP through time which is suspected due to the transient flow regime on the wells; (iv) The RTA can also be performed in similar fashion, if it is combine with other analyses, this analysis able to provide a multi-scale reservoir properties investigation from near wellbore to far field and flow period observation (boundary observation) through time, as in this case the reservoir properties is tight and flow is still in transient period; (v) It increases robustness of reservoir simulation update since it is supported by many analyses, as such, series of hopper can be confidently presented to management, as in this case a project of well stimulation (Acid Fracturing) has been performed successfully and opportunity of further field development plan can be identified. This paper shows that, for the tight reservoir in the remote location, having each well equipped with downhole gauges and dedicated wellhead meter is significantly increasing the robustness of reservoir management process. Thus, providing economic optimization for the managed asset. Regarding the capital that is invested at the beginning, it will simply pay out quickly, looking at the time and resources that need to be spent for having equipment on site.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3111
Author(s):  
Faisal Mehmood ◽  
Michael Z. Hou ◽  
Jianxing Liao ◽  
Muhammad Haris ◽  
Cheng Cao ◽  
...  

Conventionally, high-pressure water-based fluids have been injected for hydraulic stimulation of unconventional petroleum resources such as tight gas reservoirs. Apart from improving productivity, water-based frac-fluids have caused environmental and technical issues. As a result, much of the interest has shifted towards alternative frac-fluids. In this regard, n-heptane, as an alternative frac-fluid, is proposed. It necessitates the development of a multi-phase and multi-component (MM) numerical simulator for hydraulic fracturing. Therefore fracture, MM fluid flow, and proppant transport models are implemented in a thermo-hydro-mechanical (THM) coupled FLAC3D-TMVOCMP framework. After verification, the model is applied to a real field case study for optimization of wellbore x in a tight gas reservoir using n-heptane as the frac-fluid. Sensitivity analysis is carried out to investigate the effect of important parameters, such as fluid viscosity, injection rate, reservoir permeability etc., on fracture geometry with the proposed fluid. The quicker fracture closure and flowback of n-heptane compared to water-based fluid is advantageous for better proppant placement, especially in the upper half of the fracture and the early start of natural gas production in tight reservoirs. Finally, fracture designs with a minimum dimensionless conductivity of 30 are proposed.


2012 ◽  
Vol 616-618 ◽  
pp. 749-752
Author(s):  
Meng Ya Xu ◽  
Xin Wei Liao ◽  
Xiao Liang Zhao

Fractured horizontal well is the important means for the development of tight gas reservoirs. Based on the geologic characteristics of the tight gas reservoir, a pressure transient model for fractured horizontal wells is established by the Green functions and Newman product principle. The model considers the seepage resistances and the inferences from fractures each other. Practical application presents the pressure changes and flow rate distribution of fractures at non-steady state and quasi-steady state, and the suggestions for field operation are given as well.


2022 ◽  
Author(s):  
Musallam Jaboob ◽  
Ahmed Al Shueili ◽  
Hussien Al Salmi ◽  
Salim Al Hajri ◽  
German Merletti ◽  
...  

Abstract An accurate Mechanical Earth Model (MEM) is of vital importance in tight gas reservoirs where hydraulic fracturing is the only way to produce hydrocarbons economically. The Barik tight gas reservoir is the main target in Khazzan and Ghazeer Fields at the Sultanate of Oman (Rylance et al., 2011). This reservoir consists of multiple low-permeability sandstone layers interbedded with marine shales. A good understanding of the fracture propagation in such a reservoir has a major effect on completion and fracturing design. The MEM derived from sonic logs and calibrated with core data needs to be further validated by independent measurements of the fracturing geometry. Multiple surveillance techniques have been implemented in the Barik reservoir to validate the MEM and to match observations from hydraulic fracturing operations. These techniques include closure interpretation using a wireline deployed formation testing assembly, the use of mini-frac injection tests with deployed bottomhole pressure gauges, execution of post injection time-lapse temperature logging, the injection of radioactive tracers, associated production logging, subsequent pressure transient analysis and other techniques. A cross-disciplinary team worked with multiple sources of data to calibrate the MEM with the purpose of delivering a high-confidence prediction of the created fracture geometry, which honors all available surveillance data. In turn, this validation approach provided a solid basis for optimization of the completion and fracturing design, in order to optimally exploit this challenging reservoir and maximize the economic returns being delivered. For example, combination of stress testing with radioactive tracers provided confidence in stress barriers in this multilayered reservoir. Pressure transient analysis allowed to calibrate mechanical model to match fracturing half-length that is contributing to production. This paper provides extensive surveillance examples and workflows for data analysis. Surveillance of this degree in the same well is uncommon because of the associated time and cost. However, it provides unique value for understanding the target reservoir. This paper demonstrates the Value Of Information (VOI) that can be associated with such surveillance and provides a concrete and practical example that can be used for the justification of future surveillance programs associated with the hydraulic fracturing operations.


Sign in / Sign up

Export Citation Format

Share Document