reservoir simulation model
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 29)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Faizan Ali ◽  
Muhammad Hassaan Chaudhry ◽  
Muhammad Arqam Khan ◽  
Qazi Ismail Ahmed

AbstractAn approach for post-frac production profiling has been presented in this study by integrating a fracture model with a reservoir simulation model for a well drilled in tight sand reservoir of Lower Indus Basin in Pakistan. The presented integrated approach couples the output from the fracture growth model with a reservoir simulation model to effectively predict the behavior of a fractured reservoir. Optimization of hydraulic fracturing was done efficiently through the work presented in this study. The integrated model was used to perform various sensitivities. The production profiles obtained for each case were subsequently used to determine the most profitable case, using an economic model.


2021 ◽  
Author(s):  
Nader BuKhamseen ◽  
Ali Saffar ◽  
Marko Maucec

Abstract This paper presents an approach to optimize field water injection strategies using stochastic methods under uncertainty. For many fields, voidage replacement was the dictating factor of setting injection strategies. Determining the optimum injection-production ratio (IPR) requires extensive experience taking into consideration all the operational facility constraints. We present the outcome of a study, in which several optimization techniques were used to find the optimum field IPR values and then elaborate on the techniques? strengths and weaknesses. The synthetic reservoir simulation model, with millions of grid blocks and significant numbers of producers and injectors, was divided into seven IPR regions based on a streamline study. Each region was assigned an IPR value with an associated uncertainty interval. An ensemble of fifty probabilistic scenarios was generated by experimental design, using Latin Hypercube sampling of IPR values within tolerance limits. Scenarios were used as the main sampling domain to evaluate a family of optimization engines: population-based methods of artificial intelligence (AI), such as Genetic algorithms and Evolutionary strategies, Bayesian inference using sequential or Markov chain Monte Carlo, and proxy-based optimization. The optimizers were evaluated based on the recommended IPR values that meet the objective of minimizing the water cut by maximizing oil production and minimizing water production. The speed of convergence of the optimization process was also a subject of evaluation. To ensure unbiased sampling of IPR values and to prevent oversampling of boundary extremes, a uniform triangular distribution was designed. The results of the study show a clear improvement of the objective function, compared to the initial sampled cases. As a direct search method, the Evolutionary strategies with covariance matrix adaptation (ES-CMA) yielded the optimum IPR value per region. While examining the effect of applying these IPR values in the reservoir simulation model, a significant reduction of water production from the initial cases without an impact on the oil production was observed. Compared to ESCMA, other optimization methods have dem


2021 ◽  
Author(s):  
Ayesha Ahmed Abdulla Salem Alsaeedi ◽  
Eduard Latypov ◽  
Manar Elabrashy ◽  
Mohamed Alzeyoudi ◽  
Ammar Al-Ameri ◽  
...  

Abstract There are several operational challenges associated with a gas field producing in recycle or depletion mode, including a reasonable forecast and a robust production strategy planning. The complex reservoir dynamics further demands faster and reasonable analysis and decision-making. This paper discusses an all-inclusive integrated modeling approach to devise a production strategy incorporating the detailed compressor design requirements to ensure that a consistent production-stream is available in the long-term considering technical and economic aspects. The proposed production strategy is a two-fold approach. In the first step, the process utilizes the current reservoir simulation data in the production-forecast model. This history matched model captures the reservoir dynamics such as reservoir pressure decline and accounts for future wells drilling-requirements. However, the detailed production hydraulics in wellbore and surface facilities is not captured in the model. Further, to consider the declining well-performance and facility bottlenecks, integrated analysis is required. So, in the second step, the reservoir simulation model is dynamically integrated to take the input from the production model, encompassing detailed well and surface facility digital twins. The continuous interaction provides a highly reliable production profile that can be used to produce a production strategy of compressor design for the future. A strong interactive user-interface in the digital platform enables the user to configure various what-if scenarios efficiently, considering all anticipated future events and production conditions. The major output of the process was the accurate identification of the pressure-profile at multiple surface facility locations over the course of the production. Using the business-plan, field development strategy, production-profile, and the reservoir simulation output, reliable pressure-profiles were obtained, giving an indication of the declining pressures at gathering manifold over time. A well level production-profile-forecast helped in prioritizing wells for rerouting as well as workover requirements. As an outcome of this study, several manifolds were identified that are susceptible to high-pressure decline caused by declining reservoir pressures. To capture this pressure decline, a compressor mechanism was put in place to transfer the fluid to its delivery point. As this study utilizes several timesteps for the production forecast estimation, flexible routine options are also provided to the engineers to ensure that backpressure is minimized to avoid a larger back pressure on the wells for quick gains. This solution improves the efficiency of the previous approaches that were entirely relying on the reservoir simulation model to capture the pressure decline at the wellhead to forecast the compressor needs. In this methodology, the pressure profile at each node was captured to simulate a real production scenario. This holistic approach is in line with Operator's business plan strategy to identify the needs of external energy-source to avoid production-deferral.


2021 ◽  
Author(s):  
Magdy Farouk Fathalla ◽  
Mariam Ahmed Al Hosani ◽  
Ihab Nabil Mohamed ◽  
Ahmed Mohamed Al Bairaq ◽  
Aditya Ojha ◽  
...  

Abstract This paper examines risk and rewards of co-development of giant reservoir has gas cap concurrently produce with oil rim. The study focus mainly on the subsurface aspects of developing the oil rim with gas cap and impact recoveries on both the oil rim and gas cap. The primary objective of the project was to propose options to develop oil rims and gas cap reservoir aiming to maximize the recovery while ensuring that the gas and condensate production to the network are not jeopardized and the existing facility constraints are accounted. Below are the specific project objectives for each of the reservoirs: To evaluate the heterogeneities of the reservoir using available surveillance information data.To evaluate the reservoir physics and define the depleted oil rims current Gas oil contact and Water Oil Contact using the available surveillance information and plan mitigate reservoir management plan.To propose strategies in co-development plan with increase in oil rim recovery without impact on gas cap recovery.To propose the optimum Artificial methods to extended wells life by minimize the drawn down and reduce bottom head pressure.To propose methods to reduce the well head pressure to reduce back pressure on the wells. The methodology adopted in this study is based on the existing full field compositional reservoir simulation model for proposing different strategical co-development scenario: Auto gas lift Pilot implementation phase.Reactivate using Auto gas lift all the in-active wells.Propose the optimum wells drilling and completion design, like MRC, ERD and using ICV to control water and gas breakthrough.Proposing different field oil production plateauPropose different water injection scheme The study preliminary findings that extended reach drilling (ERD) wells were proposed, The ability to control gas and water breakthrough along the production section will be handled very well by deploying the advanced flow control valves, reactivation of existing Oil rim wells with Artificial lift increases Oil Rim recovery factor, and optimize offtake of gas cap and oil rim is crucial for increase the recovery factories of oil Rim and gas cap.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (12) ◽  
pp. 783-794
Author(s):  
Wiesław Szott ◽  
◽  
Krzysztof Miłek ◽  

The paper presents a numerical procedure of estimating the sequestration capacity of an underground geological structure as a potential sequestration site. The procedure adopts a reservoir simulation model of the structure and performs multiple simulation runs of the sequestration process on the model according to a pre-defined optimization scheme. It aims at finding the optimum injection schedule for existing and/or planned injection wells. Constraints to be met for identifying the sequestration capacity of the structure include a no-leakage operation for an elongated period of the sequestration performance that contains a relaxation phase in addition to the injection one. The leakage risk analysis includes three basic leakage pathways: leakage to the overburden of a storage formation, leakage beyond the structural trap boundary, leakage via induced fractures. The procedure is implemented as a dedicated script of the broadly used Petrel package and tested on an example of a synthetic geologic structure. The script performs all the tasks of the procedure flowchart including: input data definitions, simulation model initialization, iteration loops control, simulation launching, simulation results processing and analysis. Results of the procedure are discussed in detail with focus put on various leakage mechanisms and their handling in the adopted scheme. The overall results of the proposed procedure seem to confirm its usefulness and effectiveness as a numerical tool to facilitate estimation of the sequestration capacity of an underground geological structure. In addition, by studying details of the procedure runs and its intermediate results, it may be also very useful for the estimation of various leakage risks.


2021 ◽  
Author(s):  
Xupeng He ◽  
Ryan Santoso ◽  
Marwa Alsinan ◽  
Hyung Kwak ◽  
Hussein Hoteit

Abstract Detailed geological description of fractured reservoirs is typically characterized by the discrete-fracture model (DFM), in which the rock matrix and fractures are explicitly represented in the form of unstructured grids. Its high computation cost makes it infeasible for field-scale applications. Traditional flow-based and static-based methods used to upscale detailed geological DFM to reservoir simulation model suffer from, to some extent, high computation cost and low accuracy, respectively. In this paper, we present a novel deep learning-based upscaling method as an alternative to traditional methods. This work aims to build an image-to-value model based on convolutional neural network to model the nonlinear mapping between the high-resolution image of detailed DFM as input and the upscaled reservoir simulation model as output. The reservoir simulation model (herein refers to the dual-porosity model) includes the predicted fracture-fracture transmissibility linking two adjacent grid blocks and fracture-matrix transmissibility within each coarse block. The proposed upscaling workflow comprises the train-validation samples generation, convolutional neural network training-validating process, and model evaluation. We apply a two-point flux approximation (TPFA) scheme based on embedded discrete-fracture model (EDFM) to generate the datasets. We perform trial-error analysis on the coupling training-validating process to update the ratio of train-validation samples, optimize the learning rate and the network architecture. This process is applied until the trained model obtains an accuracy above 90 % for both train-validation samples. We then demonstrate its performance with the two-phase reference solutions obtained from the fine model in terms of water saturation profile and oil recovery versus PVI. Results show that the DL-based approach provides a good match with the reference solutions for both water saturation distribution and oil recovery curve. This work manifests the value of the DL-based method for the upscaling of detailed DFM to the dual-porosity model and can be extended to construct generalized dual-porosity, dual-permeability models or include more complex physics, such as capillary and gravity effects.


2021 ◽  
Author(s):  
Nigel H. Goodwin

Abstract Objectives/Scope Methods for efficient probabilistic history matching and forecasting have been available for complex reservoir studies for nearly 20 years. These require a surprisingly small number of reservoir simulation runs (typically less than 200). Nowadays, the bottleneck for reservoir decision support is building and maintaining a reservoir simulation model. This paper describes an approach which does not require a reservoir simulation model, is data driven, and includes a physics model based on material balance. It can be useful where a full simulation model is not economically justified, or where rapid decisions need to be made. Methods, Procedures, Process Previous work has described the use of proxy models and Hamiltonian Markov Chain Monte Carlo to produce valid probabilistic forecasts. To generate a data driven model, we take historical measurements of rates and pressures at each well, and apply multi-variate time series to generate a set of differential-algebraic equations (DAE) which can be integrated over time using a fully implicit solver. We combine the time series models with material balance equations, including a simple PVT and Z factor model. The parameters are adjusted in a fully Bayesian manner to generate an ensemble of models and a probabilistic forecast. The use of a DAE distinguishes the approach from normal time-series analysis, where an ARIMA model or state space model is used, and is normally only reliable for short term forecasting. Results, Observations, Conclusions We apply these techniques to the Volve reservoir model, and obtain a good history match. Moreover, the effort to build a reservoir model has been removed. We demonstrate the feasibility of simple physics models, and open up the possibility of combinations of physics models and machine learning models, so that the most appropriate approach can be used depending on resources and reservoir complexity. We have bridged the gap between pure machine learning models and full reservoir simulation. Novel/Additive Information The approach to use multi-variate time series analysis to generate a set of ordinary differential equations is novel. The extension of previously described probabilistic forecasting to a generalised model has many possible applications within and outside the oil and gas industry, and is not restricted to reservoir simulation.


2021 ◽  
Author(s):  
Mohamed Shams

Abstract This paper provides the field application of the bee colony optimization algorithm in assisting the history match of a real reservoir simulation model. Bee colony optimization algorithm is an optimization technique inspired by the natural optimization behavior shown by honeybees during searching for food. The way that honeybees search for food sources in the vicinity of their nest inspired computer science researchers to utilize and apply same principles to create optimization models and techniques. In this work the bee colony optimization mechanism is used as the optimization algorithm in the assisted the history matching workflow applied to a reservoir simulation model of WD-X field producing since 2004. The resultant history matched model is compared with with those obtained using one the most widely applied commercial AHM software tool. The results of this work indicate that using the bee colony algorithm as the optimization technique in the assisted history matching workflow provides noticeable enhancement in terms of match quality and time required to achieve a reasonable match.


2021 ◽  
Author(s):  
Bjørn Egil Ludvigsen ◽  
Mohan Sharma

Abstract Well performance calibration after history matching a reservoir simulation model ensures that the wells give realistic rates during the prediction phase. The calibration involves adjusting well model parameters to match observed production rates at specified backpressure(s). This process is usually very time consuming such that the traditional approaches using one reservoir model with hundreds of high productivity wells would take months to calibrate. The application of uncertainty-centric workflows for reservoir modeling and history matching results in many acceptable matches for phase rates and flowing bottom-hole pressure (BHP). This makes well calibration even more challenging for an ensemble of large number of simulation models, as the existing approaches are not scalable. It is known that Productivity Index (PI) integrates reservoir and well performance where most of the pressure drop happens in one to two grid blocks around well depending upon the model resolution. A workflow has been setup to fix transition by calibrating PI for each well in a history matched simulation model. Simulation PI can be modified by changing permeability-thickness (Kh), skin, or by applying PI multiplier as a correction. For a history matched ensemble with a range in water-cut and gas-oil ratio, the proposed workflow involves running flowing gradient calculations for a well corresponding to observed THP and simulated rates for different phases to calculate target BHP. A PI Multiplier is then calculated for that well and model that would shift simulation BHP to target BHP as local update to reduce the extent of jump. An ensemble of history matched models with a range in water-cut and gas-oil ratio have a variation in required BHPs unique to each case. With the well calibration performed correctly, the jump observed in rates while switching from history to prediction can be eliminated or significantly reduced. The prediction thus results in reliable rates if wells are run on pressure control and reliable plateau if the wells are run on group control. This reduces the risk of under/over-predicting ultimate hydrocarbon recovery from field and the project's cashflow. Also, this allows running sensitivities to backpressure, tubing design, and other equipment constraints to optimize reservoir performance and facilities design. The proposed workflow, which dynamically couple reservoir simulation and well performance modeling, takes a few seconds to run for a well, making it fit-for-purpose for a large ensemble of simulation models with a large number of wells.


2021 ◽  
Author(s):  
Xindan Wang ◽  
Cody Keith ◽  
Yin Zhang ◽  
Abhijit Dandekar ◽  
Samson Ning ◽  
...  

Abstract The first-ever polymer flood pilot to enhance heavy oil recovery on Alaska North Slope (ANS) is ongoing. After more than 2.5 years of polymer injection, significant benefit has been observed from the decrease in water cut from 65% to less than 15% in the project producers. The primary objective of this study is to develop a robust history-matched reservoir simulation model capable of predicting future polymer flood performance. In this work, the reservoir simulation model has been developed based on the geological model and available reservoir and fluid data. In particular, four high transmissibility strips were introduced to connect the injector-producer well pairs, simulating short-circuiting flow behavior that can be explained by viscous fingering and reproducing the water cut history. The strip transmissibilities were manually tuned to improve the history matching results during the waterflooding and polymer flooding periods, respectively. It has been found that higher strip transmissibilities match the sharp water cut increase very well in the waterflooding period. Then the strip transmissibilities need to be reduced with time to match the significant water cut reduction. The viscous fingering effect in the reservoir during waterflooding and the restoration of injection conformance during polymer flooding have been effectively represented. Based on the validated simulation model, numerical simulation tests have been conducted to investigate the oil recovery performance under different development strategies, with consideration for sensitivity to polymer parameter uncertainties. The oil recovery factor with polymer flooding can reach about 39% in 30 years, twice as much as forecasted with continued waterflooding. Besides, the updated reservoir model has been successfully employed to forecast polymer utilization, a valuable parameter to evaluate the pilot test’s economic efficiency. All the investigated development strategies indicate polymer utilization lower than 3.5 lbs/bbl in 30 years, which is economically attractive.


Sign in / Sign up

Export Citation Format

Share Document