Modified Method of Characteristics for Generating EOR Oil Recovery Curves

2021 ◽  
Author(s):  
Christian Agger ◽  
Henrik Sørensen

Abstract The paper describes a fast and approximate 1D simulation algorithm for calculating the percent recovery that can be obtained from an oil reservoir if gas injection is carried out at a pressure lower than the minimum miscibility pressure. The algorithm is based on the Method of Characteristics. While a conventional 1D reservoir simulation of a gas injection scenario may take minutes or even hours, the proposed algorithm allows a full evaluation of the recovery to be completed within seconds. To make the method numerically robust, a number of approximations were needed. The result is an extremely fast algorithm that not only provides a good estimate of the recovery obtained by gas injection, but also gives a good visualization of how the gas displaces the oil.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhifeng Wang

This paper studies and analyzes a model describing the flow of contaminated brines through the porous media under severe thermal conditions caused by the radioactive contaminants. The problem is approximated based on combining the mixed finite element method with the modified method of characteristics. In order to solve the resulting algebraic nonlinear equations efficiently, a two-grid method is presented and discussed in this paper. This approach includes a small nonlinear system on a coarse grid with size H and a linear system on a fine grid with size h . It follows from error estimates that asymptotically optimal accuracy can be obtained as long as the mesh sizes satisfy H = O h 1 / 3 .


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Sarvesh Kumar ◽  
Sangita Yadav

The incompressible miscible displacement problem in porous media is modeled by a coupled system of two nonlinear partial differential equations, the pressure-velocity equation and the concentration equation. In this paper, we present a mixed finite volume element method (FVEM) for the approximation of the pressure-velocity equation. Since modified method of characteristics (MMOC) minimizes the grid orientation effect, for the approximation of the concentration equation, we apply a standard FVEM combined with MMOC. A priori error estimates in L∞(L2) norm are derived for velocity, pressure and concentration. Numerical results are presented to substantiate the validity of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document