Carbonate Karstified Oil Fields Geological Prediction and Dynamic Simulation Through Equivalent Relative Permeability Curves

2021 ◽  
Author(s):  
Vincenzo Tarantini ◽  
Cristian Albertini ◽  
Hana Tfaili ◽  
Andrea Pirondelli ◽  
Francesco Bigoni

Abstract Karst systems heterogeneity may become a nightmare for reservoir modelers in predicting presence, spatial distribution, impact on formation petrophysical characteristics, and particularly in dynamic behaviour prediction. Moreover, the very high resolution required to describe in detail the phenomena does not reconcile with the geo-cellular model resolution typically used for reservoir simulation. The scope of the work is to present an effective approach to predict karst presence and model it dynamically. Karst presence recognition started from the analysis of anomalous well behaviour and potential sources of precursors (logs, drilling evidence, etc.) to derive concepts for karst reservoir model. This first demanding step implies then characterizing each cell classified as karstified in terms of petrophysical parameters. In a two-phase flow, karst brings to fast travelling of water which leaves the matrix almost unswept. This feature was characterized through dedicated fine simulations, leading to an upscaling of relative permeability curves for a single porosity formulation. The workflow was applied to a carbonate giant field with a long production history under waterflood development. Firstly, a machine learning algorithm was trained to recognize karst features based on log response, seismic attributes, and well dynamic evidence, then a karst probability volume was generated and utilized to predict the karst presence in the field. Karst characterization just in terms of porosity and permeability is sufficient to model the reservoir when still in single phase, however it fails to reproduce observed water production. Karst provides a high permeability path for water transport: classical history match approaches, such as the introduction of permeability multipliers, proved to be ineffective in reproducing the water breakthrough timing and growth rate. In fact, the reservoir consists of two systems, matrix, and karst: however, the karst is less known and laboratory analysis shows relative permeability only for the matrix medium. The introduction of equivalent or pseudo-relative permeability curves, accounting for both the media, was crucial for correct modelling of the reservoir underlying dynamics, allowing a proper reproduction of water breakthrough timing and water cut (WCT) trends. The implementation of a dedicated pseudo relative permeability curve dedicated to karstified cells allowed to replicate early water arrival, thus bringing to a correct prediction of oil and water rates, also highlighting the presence of bypassed oil associated with water circuiting, particularly in presence of highly karstified cells.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1676-1683 ◽  
Author(s):  
Bin Li ◽  
Wan Fen Pu ◽  
Ke Xing Li ◽  
Hu Jia ◽  
Ke Yu Wang ◽  
...  

To improve the understanding of the influence of effective permeability, reservoir temperature and oil-water viscosity on relative permeability and oil recovery factor, core displacement experiments had been performed under several experimental conditions. Core samples used in every test were natural cores that came from Halfaya oilfield while formation fluids were simulated oil and water prepared based on analyze data of actual oil and productive water. Results from the experiments indicated that the shape of relative permeability curves, irreducible water saturation, residual oil saturation, width of two-phase region and position of isotonic point were all affected by these factors. Besides, oil recovery and water cut were also related closely to permeability, temperature and viscosity ratio.


2010 ◽  
Author(s):  
Andres Chima ◽  
Efren Antonio Chavez Iriarte ◽  
Zuly Himelda Calderon Carrillo

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 990
Author(s):  
Mingxing Bai ◽  
Lu Liu ◽  
Chengli Li ◽  
Kaoping Song

The injection of carbon dioxide (CO2) in low-permeable reservoirs can not only mitigate the greenhouse effect on the environment, but also enhance oil and gas recovery (EOR). For numerical simulation work of this process, relative permeability can help predict the capacity for the flow of CO2 throughout the life of the reservoir, and reflect the changes induced by the injected CO2. In this paper, the experimental methods and empirical correlations to determine relative permeability are reviewed and discussed. Specifically, for a low-permeable reservoir in China, a core displacement experiment is performed for both natural and artificial low-permeable cores to study the relative permeability characteristics. The results show that for immiscible CO2 flooding, when considering the threshold pressure and gas slippage, the relative permeability decreases to some extent, and the relative permeability of oil/water does not reduce as much as that of CO2. In miscible flooding, the curves have different shapes for cores with a different permeability. By comparing the relative permeability curves under immiscible and miscible CO2 flooding, it is found that the two-phase span of miscible flooding is wider, and the relative permeability at the gas endpoint becomes larger.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3265-3279
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Summary Rate-transient analysis (RTA) is a useful reservoir/hydraulic fracture characterization method that can be applied to multifractured horizontal wells (MFHWs) producing from low-permeability (tight) and shale reservoirs. In this paper, we applied a recently developed three-phase RTA technique to the analysis of production data from an MFHW completed in a low-permeability volatile oil reservoir in the Western Canadian Sedimentary Basin. This RTA technique is used to analyze the transient linear flow regime for wells operated under constant flowing bottomhole pressure (BHP) conditions. With this method, the slope of the square-root-of-time plot applied to any of the producing phases can be used to directly calculate the linear flow parameter xfk without defining pseudovariables. The method requires a set of input pressure/volume/temperature (PVT) data and an estimate of two-phase relative permeability curves. For the field case studied herein, the PVT model is constructed by tuning an equation of state (EOS) from a set of PVT experiments, while the relative permeability curves are estimated from numerical model history-matchingresults. The subject well, an MFHW completed in 15 stages, produces oil, water, and gas at a nearly constant (measured downhole) flowing BHP. This well is completed in a low-permeability,near-critical volatile oil system. For this field case, application of the recently proposed RTA method leads to an estimate of xfk that is in close agreement (within 7%) with the results of a numerical model history match performed in parallel. The RTA method also provides pressure–saturation (P–S) relationships for all three phases that are within 2% of those derived from the numerical model. The derived P–S relationships are central to the use of other RTA methods that require calculation of multiphase pseudovariables. The three-phase RTA technique developed herein is a simple-yet-rigorous and accurate alternative to numerical model history matching for estimating xfk when fluid properties and relative permeability data are available.


2014 ◽  
Author(s):  
Gang Lei ◽  
Pingchuan Dong ◽  
Shu Yang ◽  
Yuansheng Li ◽  
Shaoyuan Mo ◽  
...  

2014 ◽  
Author(s):  
Gang Lei ◽  
Pingchuan Dong ◽  
Shu Yang ◽  
Yuansheng Li ◽  
Shaoyuan Mo ◽  
...  

2015 ◽  
Vol 51 (4) ◽  
pp. 2807-2824 ◽  
Author(s):  
Noriaki Watanabe ◽  
Keisuke Sakurai ◽  
Takuya Ishibashi ◽  
Yutaka Ohsaki ◽  
Tetsuya Tamagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document