Downhole Steam Generation for Green Heavy Oil Recovery

2021 ◽  
Author(s):  
Abdulsallam Al-Mashrafi ◽  
Mahmood Fani ◽  
Faisal Asfand ◽  
Mahmood Amani ◽  
Mohsen Assadi ◽  
...  

Abstract The ultimate target of heavy oil recovery is to enhance oil mobility by transferring steam's thermal energy to the oil phase, incrementing its temperature, and reducing heavy oil's viscosity. While the various types of steam floods such as Cyclic Steam Injection (CSI) and Steam-Assisted Gravity Drainage (SAGD) are widely used worldwide, they have certain limitations that need further improvements. Notably, in surface steam generation systems, downhole steam quality is around 70% which means that 30% of latent heat is lost while steam travels from the surface to the pre-determined downhole location. Downhole steam generation (DHSG) can be a viable alternative for the surface steam injection in which steam will be generated downhole instead of on the surface. The asserted method presents significant benefits such as preventing steam quality loss, decreasing the environmental effects, and enhancing the heavy oil recovery by co-injecting the flue gas products such as CO2, and consequently, the economic outcomes will be increased. In this research, a comprehensive techno-economic case study has been conducted on a heavy oil reservoir to evaluate the economic and technical advantages of DHSG compared to surface steam generation. Various technical expenses and revenues such as investment costs, operating costs, royalties, and taxes have been considered in a simulation model in MATLAB. This DHSG feasibility assessment has been performed using data of a heavy oil reserve currently under steam flood. Results showed that DHSG could increase up to 50% economic and technical interest than conventional steam injection projects. One of the outstanding benefits of DHSG is the reduction of heat loss. Since steam is produced in-situ, either downhole or in the reservoir, no waste of heat occurs. Typically, most heat losses happen on surface lines and wellbore during steam injection from the surface, which accounts for approximately 32%. Thus, this issue is excluded using the DHSG method. The results of the recent effort fit well into the current industry's requirements. DHSG can (1) increase the rate of heavy oil production, (2) decrease the extra expenses, and (3) dwindle the environmental side effects of CO2 emission of surface steam generation. Compared with conventional thermal methods, in DHSG, the steam to oil ratio remains constant with depth change while the desired steam quality can be achieved at any location. The asserted benefits can ultimately optimize the steam injection with a significant reduction in UTC, hence, improved profitability.

2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


2012 ◽  
Author(s):  
Evgenii N. Taraskin ◽  
Stanislav Ursegov ◽  
Vladimir Muliak ◽  
Mikhail Vasilievich Chertenkov ◽  
Andrey Alabushin

2017 ◽  
Vol 39 (13-14) ◽  
pp. 1283-1295
Author(s):  
Chun-sheng Guo ◽  
Fang-yi Qu ◽  
Yong Liu ◽  
Jing-ran Niu ◽  
Yong Zou

Sign in / Sign up

Export Citation Format

Share Document