scholarly journals Discrete Fracture Model for Hydro-Mechanical Coupling in Fractured Reservoirs

2021 ◽  
Author(s):  
Xupeng He ◽  
Tian Qiao ◽  
Marwa Alsinan ◽  
Hyung Kwak ◽  
Hussein Hoteit

Abstract The process of coupled flow and mechanics occurs in various environmental and energy applications, including conventional and unconventional fractured reservoirs. This work establishes a new formulation for modeling hydro-mechanical coupling in fractured reservoirs. The discrete-fracture model (DFM), in which the porous matrix and fractures are represented explicitly in the form of unstructured grid, has been widely used to describe fluid flow in fractured formations. In this work, we extend the DFM approach for modeling coupled flow-mechanics process, in which flow problems are solved using the multipoint flux approximation (MPFA) method, and mechanics problems are solved using the multipoint stress approximation (MPSA) method. The coupled flow-mechanics problems share the same computational grid to avoid projection issues and allow for convenient exchange between them. We model the fracture mechanical behavior as a two-surface contact problem. The resulting coupled system of nonlinear equations is solved in a fully-implicit manner. The accuracy and generality of the numerical implementation are accessed using cases with analytical solutions, which shows an excellent match. We then apply the methodology to more complex cases to demonstrate its general applicability. We also investigate the geomechanical influence on fracture permeability change using 2D rock fractures. This work introduces a novel formulation for modeling the coupled flow-mechanics process in fractured reservoirs, and can be readily implemented in reservoir characterization workflow.

SPE Journal ◽  
2021 ◽  
pp. 1-24
Author(s):  
I Shovkun ◽  
H. A. Tchelepi

Summary Mechanical deformation induced by injection and withdrawal of fluids from the subsurface can significantly alter the flow paths in naturally fractured reservoirs. Modeling coupled fluid flow and mechanical deformation in fractured reservoirs relies on either sophisticated gridding techniques or enhancing the variables (degrees of freedom) that represent the physics to describe the behavior of fractured formation accurately. The objective of this study is to develop a spatial discretization scheme that cuts the “matrix” grid with fracture planes and utilizes traditional formulations for fluid flow and geomechanics. The flow model uses the standard low-order finite volume method with the compartmental embedded discrete fracture model (cEDFM). Due to the presence of nonstandard polyhedra in the grid after cutting/splitting, we use numerical harmonic shape functions within a polyhedral finite element (PFE) formulation for mechanical deformation. To enforce fracture-contact constraints, we use a penalty approach. We provide a series of comparisons between the approach that uses conforming unstructured grids and an unstructured discrete fracture model (uDFM) with the new cut-cell PFE formulation. The manuscript validates and compares both methods for linear elastic, single-fracture slip, and Mandel’s problems with tetrahedral, Cartesian, and perpendicular-bisectional (PBI) grids. Finally, the paper presents a fully coupled 3D simulation with multiple inclined intersecting faults activated in shear by fluid injection, which caused an increase in effective reservoir permeability. Our approach allows for great reduction in the complexity of the (gridded) model construction while retaining the solution accuracy together with great savings in the computational cost compared with uDFM. The flexibility of our model with respect to the types of grid polyhedra allows us to eliminate mesh artifacts in the solution of the transport equations typically observed when using tetrahedral grids and two-point flux approximation.


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 289-303 ◽  
Author(s):  
Ali Moinfar ◽  
Abdoljalil Varavei ◽  
Kamy Sepehrnoori ◽  
Russell T. Johns

Summary Many naturally fractured reservoirs around the world have depleted significantly, and improved-oil-recovery (IOR) processes are necessary for further development. Hence, the modeling of fractured reservoirs has received increased attention recently. Accurate modeling and simulation of naturally fractured reservoirs (NFRs) is still challenging because of permeability anisotropies and contrasts. Nonphysical abstractions inherent in conventional dual-porosity and dual-permeability models make them inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent technologies for discrete fracture modeling may suffer from large simulation run times, and the industry has not used such approaches widely, even though they give more-accurate representations of fractured reservoirs than dual-continuum models. We developed an embedded discrete fracture model (DFM) for an in-house compositional reservoir simulator that borrows the dual-medium concept from conventional dual-continuum models and also incorporates the effect of each fracture explicitly. The model is compatible with existing finite-difference reservoir simulators. In contrast to dual-continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity of a typical NFR. The accuracy of the embedded DFM is confirmed by comparing the results with the fine-grid, explicit-fracture simulations for a case study including orthogonal fractures and a case with a nonaligned fracture. We also perform a grid-sensitivity study to show the convergence of the method as the grid is refined. Our simulations indicate that to achieve accurate results, the embedded discrete fracture model may only require moderate mesh refinement around the fractures and hence offers a computationally efficient approach. Furthermore, examples of waterflooding, gas injection, and primary depletion are presented to demonstrate the performance and applicability of the developed method for simulating fluid flow in NFRs.


SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 58-67 ◽  
Author(s):  
Bin Gong ◽  
Mohammad Karimi-Fard ◽  
Louis J. Durlofsky

Summary The geological complexity of fractured reservoirs requires the use of simplified models for flow simulation. This is often addressed in practice by using flow modeling procedures based on the dual-porosity, dual-permeability concept. However, in most existing approaches, there is not a systematic and quantitative link between the underlying geological model [in this case, a discrete fracture model (DFM)] and the parameters appearing in the flow model. In this work, a systematic upscaling procedure is presented to construct a dual-porosity, dual-permeability model from detailed discrete fracture characterizations. The technique, referred to as a multiple subregion (MSR) model, represents an extension of an earlier method that did not account for gravitational effects. The subregions (or subgrid) are constructed for each coarse block using the iso-pressure curves obtained from local pressure solutions of a discrete fracture model over the block. The subregions thus account for the fracture distribution and can represent accurately the matrix-matrix and matrix-fracture transfer. The matrix subregions are connected to matrices in vertically adjacent blocks (as in a dual-permeability model) to capture phase segregation caused by gravity. Two-block problems are solved to provide fracture-fracture flow effects. All connections in the coarse-scale model are characterized in terms of upscaled transmissibilities, and the resulting coarse model can be used with any connectivity-based reservoir simulator. The method is applied to simulate 2D and 3D fracture models, with viscous, gravitational, and capillary pressure effects, and is shown to provide results in close agreement with the underlying DFM. Speedups of approximately a factor of 120 are observed for a complex 3D example. Introduction The accurate simulation of fractured reservoirs remains a significant challenge. Although improvements in many technical areas are required to enable reliable predictions, there is a clear need for procedures that provide accurate and efficient flow models from highly resolved geological characterizations. These geological descriptions are often in the form of discrete fracture representations, which are generally too detailed for direct use in reservoir simulation. Dual-porosity modeling is the standard simulation technique for flow prediction of fractured reservoirs. This model was first proposed by Barenblatt and Zheltov (1960) and introduced to the petroleum industry by Warren and Root (1963). The key aspect of this approach is to separate the flow through the fractures from the flow inside the matrix. The reservoir model is represented by two overlapping continua—one continuum to represent the fracture network, where the main flow occurs, and another continuum to represent the matrix, which acts as a source for the fracture continuum. The interaction between these two continua is modeled through a transfer function, also called the shape factor. Though very useful, the model is quite simple in that the geological and flow complexity is reduced to a single parameter, the shape factor. This parameter is in general different for each gridblock depending on the underlying geology and the type of flow.


Sign in / Sign up

Export Citation Format

Share Document