IR 4.0 Technologies Enable Breakthroughs in Upstream Production Operations

2021 ◽  
Author(s):  
Nasser M. Al-Hajri ◽  
Sulaiman T. Ureiga ◽  
Akram R. Barghouti ◽  
Syed K. Gilani ◽  
Muhammad Imran Javed

Abstract The fourth industrial revolution (IR 4.0) has brought about many exciting and game changing technological advancements in recent years that span across different industries. Our petroleum industry was no exception. In this paper, we will present realizations of IR 4.0's fruitful impact on multiple upstream production engineering and operation problems. The first IR 4.0 technology uses machine learning techniques to predict scale inhibition and design inhibition programs that arrest scale formation. Scale formation is a common oilfield problem that consumes a lot of expense from operators. The machine learning method has shown its ability to curtail such expenses and manage risks associated with scale formation. The second technology is modeling the reliability of downhole Inflow Control Valves (ICVs) and predicting their failure. The technology is based on advanced big data analytics and uses automated statistical techniques to achieve the method objectives. This technology provides production engineers with an analytical decision-making model to predict ICVs failures and suggest the optimum frequency for stroking or cycling of the downhole valves as a preventive maintenance practice. The third IR 4.0 technology is the automated well integrity risk ranking. This particular technology uses smart interfaces and advanced computation algorithms applied on big data to assign (or weigh) risks of a well in terms of well integrity. This intelligent integrity ranking or classification shifts focus to wells prone to integrity failures more than the healthy ones. In addition, the method helps optimize integrity surveillance resources and prevents the obvious setbacks from a well integrity issue. The paper will explain detailed methodologies of all three IR 4.0 technologies and outline expected results from field implementation of those technologies.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tahani Daghistani ◽  
Huda AlGhamdi ◽  
Riyad Alshammari ◽  
Raed H. AlHazme

AbstractOutpatients who fail to attend their appointments have a negative impact on the healthcare outcome. Thus, healthcare organizations facing new opportunities, one of them is to improve the quality of healthcare. The main challenges is predictive analysis using techniques capable of handle the huge data generated. We propose a big data framework for identifying subject outpatients’ no-show via feature engineering and machine learning (MLlib) in the Spark platform. This study evaluates the performance of five machine learning techniques, using the (2,011,813‬) outpatients’ visits data. Conducting several experiments and using different validation methods, the Gradient Boosting (GB) performed best, resulting in an increase of accuracy and ROC to 79% and 81%, respectively. In addition, we showed that exploring and evaluating the performance of the machine learning models using various evaluation methods is critical as the accuracy of prediction can significantly differ. The aim of this paper is exploring factors that affect no-show rate and can be used to formulate predictions using big data machine learning techniques.


2020 ◽  
Vol 17 (1) ◽  
pp. 92-100
Author(s):  
Balanand Jha ◽  
Kumar Abhishek ◽  
Akshay Deepak ◽  
Prakhar Shrivastav ◽  
Suraj Thakre ◽  
...  

In the age of start-ups and technical research, the demand for high-end computing power and loads of space is ever increasing. Machine learning techniques have become an inseparable part of the big data analytics. Setting up one’s own infrastructure to deal with all this vastness is usually not feasible due to high expenses and lack of desired expertise. As a solution to this problem, this paper proposes a system for Big-Data Analytics and Machine Learning based on Hadoop and Spark frameworks that also supports Operating System (OS) Rental Services. Machine Learning (ML) services provide option to use both existing inbuilt popular models or create one’s own model. OS Rental services provide users with high end infrastructure on their low-end devices on rent. The entire implementation has been made open source for ease of access and facilitating extensibility.


2019 ◽  
Vol 2019 (2) ◽  
pp. 103-112
Author(s):  
Dr. Pasumpon pandian

The recent technological growth at a rapid pace has paved way for the big data that denotes to the exponential growth of the information’s. The big data analytics are the trending concepts that have emerged as the promising technology that offers more enhanced perceptions from the huge set of the data that have been produced from the diverse areas. The review in the paper proceeds with the methods of the big-data-analytics and the machine-learning in handling, the huge set of data flow. The overview of the utilization of the machine-learning algorithms in the analytics of high voluminous data would provide with the deeper and the richer analysis of the huge set of information gathered to extract the valuable and turn it into actionable information’s. The paper is to review the part of machine-learning algorithms in the analytics of high voluminous data


2019 ◽  
Vol 8 (4) ◽  
pp. 7356-7360

Data Analytics is a scientific as well as an engineering tool used to investigate the raw data to revamp the information to achieve knowledge. This is normally connected with obtaining knowledge from reliable information source and rapidity in information processing, and future prediction of the data analysis. Big Data analytics is strongly evolving with different features of volume, velocity and Vectors. Most of the organizations are now concentrating on analyzing information or raw data that are fascinated in deploying analytics to survive forthcoming issues and challenges. The prediction model or intelligent model is proposed in this research to apply machine learning algorithms in the data set. Then it is interpreted and to analyze the better forecast value of the study. The major objective of this research work is to find the optimum prediction from the medical data set using the machine learning techniques.


Author(s):  
Cerene Mariam Abraham ◽  
Mannathazhathu Sudheep Elayidom ◽  
Thankappan Santhanakrishnan

Background: Machine learning is one of the most popular research areas today. It relates closely to the field of data mining, which extracts information and trends from large datasets. Aims: The objective of this paper is to (a) illustrate big data analytics for the Indian derivative market and (b) identify trends in the data. Methods: Based on input from experts in the equity domain, the data are verified statistically using data mining techniques. Specifically, ten years of daily derivative data is used for training and testing purposes. The methods that are adopted for this research work include model generation using ARIMA, Hadoop framework which comprises mapping and reducing for big data analysis. Results: The results of this work are the observation of a trend that indicates the rise and fall of price in derivatives , generation of time-series similarity graph and plotting of frequency of temporal data. Conclusion: Big data analytics is an underexplored topic in the Indian derivative market and the results from this paper can be used by investors to earn both short-term and long-term benefits.


2020 ◽  
Vol 11 (2) ◽  
pp. 20-37 ◽  
Author(s):  
Amine Rghioui ◽  
Jaime Lloret ◽  
Abedlmajid Oumnad

Every single day, a massive amount of data is generated by different medical data sources. Processing this wealth of data is indeed a daunting task, and it forces us to adopt smart and scalable computational strategies, including machine intelligence, big data analytics, and data classification. The authors can use the Big Data analysis for effective decision making in healthcare domain using the existing machine learning algorithms with some modification to it. The fundamental purpose of this article is to summarize the role of Big Data analysis in healthcare, and to provide a comprehensive analysis of the various techniques involved in mining big data. This article provides an overview of Big Data, applicability of it in healthcare, some of the work in progress and a future works. Therefore, in this article, the use of machine learning techniques is proposed for real-time diabetic patient data analysis from IoT devices and gateways.


2020 ◽  
Author(s):  
Tahani Daghistani ◽  
Huda AlGhamdi ◽  
Riyad Alshammari ◽  
Raed H. AlHazme

Abstract Outpatients who fail to attend their appointments have a negative impact on the healthcare outcome. Thus, healthcare organizations facing new opportunities, one of them is to improve the quality of healthcare. The main challenges is predictive analysis using techniques capable of handle the huge data generated. We propose a big data framework for identifying subject outpatients’ no-show via feature engineering and machine learning (MLlib) in the Spark platform. This study evaluates the performance of five machine learning techniques, using the (2,011,813) outpatients’ visits data. Conducting several experiments and using different validation methods, the Gradient Boosting (GB) performed best, resulting in an increase of accuracy and ROC to 79% and 81%, respectively. In addition, we showed that exploring and evaluating the performance of the machine learning models using various evaluation methods is critical as the accuracy of prediction can significantly differ. The aim of this paper is exploring factors that affect no-show rate and can be used to formulate predictions using big data machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document