Managing Drilling Real-Time Center Remotely Amid Covid-19 Pandemic in Compliance to 100% HSE

2021 ◽  
Author(s):  
Fernando Jose Landaeta Rivas ◽  
Michael Bradley Cotten ◽  
Paulinus Abhyudaya Bimastianto ◽  
Shreepad Purushottam Khambete ◽  
Suhail Mohammed Al Ameri ◽  
...  

Abstract COVID-19 pandemic shifted the conventional working paradigms, forcing an accelerated adaptability to remote working, ensuring the wellbeing of the employees without sacrificing the effectiveness, in compliance to 100% HSE. To overcome this challenge, Drilling Real Time Operations Center (RTOC) transformed the conventional Monitoring Onsite Hub into a full virtual collaborative remote center operated from each individual's place. This paper describes how RTOC successfully, continued to support drilling operations off-site through secure portal during work-from-home period. RTOC ensured to have the sufficient connectivity resources and security protocols to access the IT company environment and execute the tasks at the same productivity level, as operating from the hub. The platform design involved virtual machine remoting in an integrated communication environment, in synergy with the conventional ways of communication. Several data access points were developed to ensure an unstoppable link between operational teams and the data deliverables. To grantee productivity, KPIs were established and closely monitored, e.g. active rigs count, connectivity issues, software support, real-time drilling performance reporting, engineering computations, with continuous quality audits. Despite several challenges at start due to change in the nature of the work, RTOC successfully overcame the difficulties by having proper procedures and infrastructure in place. The virtual collaborative environment allowed the team to operate the center remotely and meet the targets for deliverables. Defining a clear communication protocol created efficiency when addressing data aggregation problems. As a result, RTOC was able to maintain the resolution time for data aggregation issues and continue to produce drilling performance reports within time. RTOC launched a mobile application for drilling real-time monitoring to support user mobility prior to the mandate of work-from-home policy. RTOC continued to support drilling operations during work-from-home period by providing real-time computations for drilling operations, doing real-time interactions for drilling events and introducing data analytics platform for users to analyze drilling performance. In summary, systematic implementation of the workflows and following clear chain of command have proven to be effective in ensuring business continuity of RTOC. Building trust and respect helped boost the morale and productivity of the team while ensuring their safety and wellbeing. The pandemic has been, indeed, a tough period for the world but the shift of working lifestyle was indeed a unique experience. It broadened the horizon for RTOC to develop advanced collaboration tools and upgrade the infrastructure to be future-ready for higher mobility. This novelty can also be adopted as standard procedure for Emergency Response Plan.

2021 ◽  
Author(s):  
Raphael Chidiogo Ozioko ◽  
Humphrey Osita ◽  
Udochukwu Ohia

Abstract This paper describes the successful deployment of integrated underreamer technology with real-time communication through mud-pulse telemetry system, to drill and eliminate rathole in 17 1/2-in × 20-in successfully in one run and helped set casing as close as possible to the depth of suspected pressure ramp on an exploratory well offshore Nigeria. This technology uses the same communication system (actuator bypass) as Measurement While Drilling tools (MWD), Logging While Drilling tools (LWD) and Rotary Steerable System (RSS). Integrated underreamers broadly used in the drilling operations support optimized casing and completion programs and helps reduce operational risks such as wellbore instability. The ball drop and hydraulically activated reamer technologies available today comes with limitations and HSE risks. The distinctive functionalities of the integrated underreamer technology described here, such as unlimited and fast activation and deactivation via downlinking and real time downhole feedback, reduce uncertainties and operational costs in the complex and challenging deep offshore drilling operations. The real-time communication through mud-pulse telemetry system enabled the placement of integrated underreamer 6 meters from the bit thereby reducing rathole length to approximately 9 meters compared to 80 meters for conventional underreamer application. The integrated underreamer is compatible with existing RSS and provide unlimited activation cycles. The integrated underreamer offers flexibility in placement in the bottom hole assembly (BHA) and it can be used as a near bit reamer, or as main reamer or as both. In this case, the integrated near bit underreamer eliminated the need for a dedicated rathole removal run. It also offered a feedback confirmation of the cutter blades activation status and provided hole opening log thereby reducing the operational uncertainties for the under reaming, saving rig time up to 16 hours for shoulder test. The underreamer was successfully deployed to drill and ream the challenging 14 ¾" × 17 ½" and ream 17 ½" × 20" section offshore Nigeria. Both sections were drilled and reamed to section Total Depth (TD) in one run with all directional reuirements and Measuring While Drilling (MWD)/Logging While Drilling (LWD) met saving client approximately 4 days of rig spread cost. The reamer appeared to provide an in-gauge borehole allowing for successful running and cementing of liners without any issues, demonstrating superior borehole quality. The new Technology proved to be a reliable and flexible hole enlargement while drilling solution that help to improve drilling performance, reduce operational risks and save cost.


2021 ◽  
Author(s):  
Mohammed M Al-Rubaii ◽  
Dhafer Al-Shehri ◽  
Mohamed N Mahmoud ◽  
Saleh M Al-Harbi ◽  
Khaled A Al-Qahtani

Abstract Hole cleaning efficiency is one of the major factors that affects well drilling performance. Rate of penetration (ROP) is highly dependent on hole cleaning efficiency. Hole cleaning performance can be monitored in real-time in order to make sure drilled cuttings generated are efficiently transported to surface. The objective of this paper to present a real time automated model to obtain hole cleaning efficiency and thus effectively adjust parameters as required to improve drilling performance. The process adopts a modified real time carrying capacity indicator. There are many hole cleaning models, methodologies, chemicals and correlations, but majority of these models do not simulate drilling operations sequences and are not dependent on practicality of drilling operations. The developed real time hole cleaning indicator can ensure continuous monitoring and evaluation of hole cleaning performance during drilling operations. The methodology of real time model development is by selecting offset mechanical drilling parameters and drilling fluid parameters where collected, analyzed, tested and validated to model strong hole cleaning efficiency indicator that can extremely participate and facilitate a position in drilling automations and fourth industry revolution. The automated hole cleaning model is utilizing real time sensors of drilling and validate the strongest relationships among the variables. The study, analysis, test and validation of the relationships will reveal the significant parameters that will contribute massively for model development procedures. The model can be run as well by using the real time sensors readings and their inputs to be fed into the developed automated model. The developed model of real time carrying capacity indicator profile will be shown as function of depth, drilling fluid density, flow rate of mud pump or mud pump output, and other important factors will be illustrated by details. The model has been developed and validated in the field of drilling operations to empower the drilling teams for better and understandable monitoring and evaluation of hole cleaning efficiency while performing drilling operations. The real time model can provide a vision for better control of mud additives and that will contribute to mud cost effectiveness. The automated model of hole cleaning efficiency optimized the rate of penetration (ROP) by 50% in well drilling performance as a noticeable and valuable improvement. This optimum improvement saved cost and time of rig and drilling of wells and contributed to accelerate wells’ delivery. The innovative real time model was developed to optimize drilling and operations efficiency by using the surface rig sensors and interpret the downhole measurements and that can lead innovatively to other important hole cleaning indicators and other tactics for better development of downhole measurements models that can participate for optimized drilling efficiency.


2006 ◽  
Author(s):  
Tian He ◽  
Lin Gu ◽  
Liqian Luo ◽  
Ting Yan ◽  
John A. Stankovic ◽  
...  

2015 ◽  
Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yanfang Wang ◽  
Saeed Salehi

Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.


2016 ◽  
Author(s):  
M. Cui ◽  
G. H. Wang ◽  
H. Y. Ge ◽  
X. Z. Chen ◽  
H. W. Guo

Author(s):  
Haqi Khalid ◽  
Shaiful Jahari Hashim ◽  
Sharifah Mumtazah Syed Ahamed ◽  
Fazirulhisyam Hashim ◽  
Muhammad Akmal Chaudhary

Sign in / Sign up

Export Citation Format

Share Document