Basins Analysis and Petroleum Systems Modeling of Western Black Sea, Ukrainian Sector

2021 ◽  
Author(s):  
Ivan Karpenko ◽  
Ihor Ischenko ◽  
Olha Nikolenko ◽  
Felipe Rodrigues ◽  
Serhii Levonyuk ◽  
...  

Abstract The Ukrainian sector of the Western Black Sea (WBS) is one of the last remaining exploration frontiers in Europe. This area, which includes shelf to deepwater environments, is underexplored with no drilling of targets in water depths exceeding 100 meters. That is why, the Ukrainian sector of the WBS is attractive for exploration, especially in the context of new play types and targets such as biogenic gas. These hydrocarbon formations have been proven by neighboring Romania and Turkey in the areas adjacent to Ukrainian waters. Therefore, a rigorous Basin Analysis program has been initiated to assess the petroleum systems and play risks in the entire Ukrainian sector of the WBS. The goals of this program are: 1) to establish a regional geoscience foundation following best industrial practices in exploration; 2) to enable establishing more accurate risking and ranking procedures for an exploration portfolio and 3) to provide critical support for the analysis of a new generation of seismic data that is currently being acquired. In this paper the initial scope of work is presented.

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. B181-B192 ◽  
Author(s):  
Florent Colin ◽  
Stéphan Ker ◽  
Bruno Marsset

Very-high-resolution (VHR) marine seismic reflection helps to identify and characterize potential geohazards occurring in the upper part (300 m) of the subseafloor. Although the lateral and vertical resolutions achieved in shallow water depths ([Formula: see text]) using conventional surface-towed technology are adequate, these resolutions quickly deteriorate at greater water depths. The SYstème SIsmique de Fond (SYSIF), a multichannel deep-towed seismic system, has been designed to acquire VHR data (frequency bandwidth [220–1050 Hz] and vertical resolution of 0.6 m) at great water depths. However, the processing of deep-towed multichannel data is challenging because the source and the receivers are constantly moving with respect to each other according to the towing configuration. We have introduced a new workflow that allows the application of conventional processing algorithms to extended deep-towed seismic data sets. First, a relocation of the source and receivers is necessary to obtain a sufficiently accurate acquisition geometry. Variations along the profile in the depth of the deep-towed system result in a complex geometry in which the source and receiver depth vary separately and do not share the same acquisition datum. We have designed a dedicated datuming algorithm to shift the source and receivers to the same datum. Thus, the procedure allows the application of conventional processing algorithms to perform velocity analysis and depth imaging and therefore allows access to the full potential of the seismic system. We have successfully applied this methodology to deep-towed multichannel data from the western Black Sea. In particular, the derived velocity model highlights shallow gas charged anticline structures with unrivaled resolution.


Author(s):  
A. Livsey

South Sumatra is considered a mature exploration area, with over 2500MMbbls of oil and 9.5TCF of gas produced. However a recent large gas discovery in the Kali Berau Dalam-2 well in this basin, highlights that significant new reserve additions can still be made in these areas by the re-evaluation of the regional petroleum systems, both by identification of new plays or extension of plays to unexplored areas. In many mature areas the exploration and concession award history often results in successively more focused exploration programmes in smaller areas. This can lead to an increased emphasis on reservoir and trap delineation without further evaluation of the regional petroleum systems and, in particular, the hydrocarbon charge component. The Tungkal PSC area is a good example of an area that has undergone a long exploration history involving numerous operators with successive focus on block scale petroleum geology at the expense of the more regional controls on hydrocarbon prospectivity. An improved understanding of hydrocarbon accumulation in the Tungkal PSC required both using regional petroleum systems analysis and hydrocarbon charge modelling. While the Tungkal PSC operators had acquired high quality seismic data and drilled a number of wells, these were mainly focused on improving production from the existing field (Mengoepeh). More recent exploration-driven work highlighted the need for a new look at the hydrocarbon charge history but it was clear that little work had been done in the past few year to better understand exploration risk. This paper summarises the methodology employed and the results obtained, from a study, carried out in 2014-15, to better understand hydrocarbon accumulation within the current Tungkal PSC area. It has involved integration of available well and seismic data from the current and historical PSC area with published regional paleogeographic models, regional surface geology and structure maps, together with a regional oil generation model. This approach has allowed a better understanding of the genesis of the discovered hydrocarbons and identification of areas for future exploration interest.


2021 ◽  
Author(s):  
Anthony Aming

Abstract See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset. The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.


2016 ◽  
Vol 4 (1) ◽  
pp. SA95-SA111 ◽  
Author(s):  
Tetsuya Fujii ◽  
Than Tin Aung ◽  
Naoya Wada ◽  
Yuhei Komatsu ◽  
Kiyofumi Suzuki ◽  
...  

We have performed 2D and 3D gas hydrate (GH) petroleum systems modeling for the Pleistocene turbiditic sedimentary sequences distributed in the Daini-Atsumi area in the eastern Nankai Trough to understand the accumulation mechanisms and their spatial distribution related to geologic and geochemical processes. High-resolution seismic facies analysis and interpretations were used to define facies distributions in the models. We have created a new biogenic methane generation model based on the biomarker analysis using core samples and incorporated it into our model. Our 2D models were built and simulated to confirm the parameters to be used for 3D modeling. Global sea level changes and paleogeometry estimated from 3D structural restoration results were taken into account to determine the paleowater depth of the deposited sedimentary sequences. Pressure and temperature distributions were modeled because they are the basic factors that control the GH stability zone. Our 2D modeling results suggested that the setting of biogenic methane generation depth is one of the most important controlling factors for GH accumulation in the Nankai Trough, which may be related to the timing of methane upward migration (expulsion) and methane solution process in pore water. Our 3D modeling results suggested that the distribution of sandy sediments and the formation dip direction are important controlling factors in the accumulation of GHs. We also found that the simulated amount of GH accumulation from the petroleum systems modeling compares well with independent estimations using 3D seismic and well data. This suggests that the model constructed in this study is valid for this GH system evaluation and that this type of evaluation can be useful as a supplemental approach to resource assessment.


2014 ◽  
Vol 4 (2) ◽  
pp. 40-53
Author(s):  
Krzysztof Jan Zieba ◽  
Matthias Daszinnies ◽  
Benjamin Emmel ◽  
Ane Lothe ◽  
Arnt Grøver ◽  
...  

1978 ◽  
Vol 18 (1) ◽  
pp. 34 ◽  
Author(s):  
H. M. J. Stagg

The Scott Plateau and the adjacent Rowley Terrace cover about 130,000 km2 beyond Australia's Northwest Shelf in water depths ranging from 300 m to 3000 m. The regional geology and structural evolution of the area have been interpreted from about 13,000 km of seismic reflection profiles.The Scott Plateau forms a subsided oceanward margin to the Browse Basin. For much of the period from the Carboniferous to the Middle Jurassic, preceding the breakup which formed this part of the continental margin, the Scott Plateau was probably above sea level shedding sediment into the developing Browse Basin. After breakup in the Bathonian to Callovian, the plateau subsided, until by the Late Cretaceous open marine conditions were prevalent over most of the area, with the probable exception of some structurally high areas which may have remained emergent until early in the Tertiary. Carbonate sedimentation commenced in the Santonian and has continued to the present, with major hiatuses in the Paleocene and Oligocene. Analysis of magnetic and seismic data indicates that, over much of the plateau, economic basement of possible Kimberley Block equivalents is probably no more than 3 to 4 km below sea bed. To the south of the Scott Plateau, the Rowley Terrace is underlain by a wedge of at least 6 km of Mesozoic and Tertiary sediments of the northeast- trending Rowley Sub - basin. The Rowley Sub -basin connects with the Beagle Sub-basin to the southwest and probably connects with the Browse Basin to the northeast. It has been largely unaffected by episodes of faulting, except in the southwest where faulting and folding are pronounced. The petroleum potential of the Scott Plateau is not rated highly. The potential hydrocarbon-bearing sediments here are probably no younger than Palaeozoic. These are quite likely to be only 2 to 4 km thick, and any hydrocarbons generated within them would probably have been lost during the protracted period of emergence and erosion that preceded breakup. The hydrocarbon potential appears to be greater in the Rowley Sub-basin, where Triassic to Cretaceous shale and siltstone source rocks, and Triassic to Lower Cretaceous sandstone reservoir rocks are expected to be present. However, the potential of these sequences is downgraded because hydrocarbon shows in exploration wells on the adjacent part of the Northwest Shelf have been only minor, and by the apparent scarcity of suitable traps. Exploitation of any hydrocarbons would be costly owing to the great water depths.


2012 ◽  
Vol 52 (1) ◽  
pp. 525
Author(s):  
Margaret Hildick-Pytte

Recent investigation, including mapping re-processed seismic data, suggests there is deeper hydrocarbon potential in the WA-442-P and NT/P81 exploration permits beneath the Early Carboniferous Tanmurra Formation horizon. Earlier interpretation of the area showed tilted fault blocks commonly thought of as economic basement in the vicinity of the Turtle and Barnett oil fields and extending to the northwest to connect with the Berkley Platform. The deep-gas play type is structural and is believed to be two nested three-way dip anticlines developed against a large bounding fault to the northeast, with axial trends northwest to southeast, and axial plane curving towards the northeast for the deeper structure. This play type is believed to be associated with structural compression and movement along the master fault with incremental re-activation most recently during the Cainozoic as recorded in overlying sediments. The Nova Structure and the deeper Super Nova structure have closures of about 450 and 550 km2, respectively. The sediments beneath the Nova horizon are believed to be of Devonian Frasnian-Famennian age but have not been drilled offshore in the Southern Bonaparte Basin (Petrel Sub-basin). Earlier work suggests that there are two petroleum systems present in the southern Bonaparte Basin, a Larapintine source from Early Palaeozoic Devonian to Lower Carboniferous source rocks, and a transitional Larapintine/Gondwana system sourced from Lower Carboniferous to Permian source rocks. Hydrocarbon charge for the structures is most likely from the Larapintine source rock intervals or yet to be identified older intervals associated with the salt deposition during the Ordovician and Silurian. Independent estimates place close to 7 TCF (trillion cubic feet) of gas in the Nova Structure. New 3D seismic data acquisition is planned over the structures to better define the geology and ultimately delineate well locations.


Sign in / Sign up

Export Citation Format

Share Document