Identification of Productivity Problems in Clastic Sandstone Reservoirs of the Eocene Lower C Group, Block III, Lake Maracaibo, Western Venezuela using Well Log Data

Author(s):  
M.C. Coll ◽  
B. Cortiula ◽  
A. Toledo
1998 ◽  
Author(s):  
Iscander R. Diyashev ◽  
Walter B. Ayers ◽  
Ronald B. Martin ◽  
Alejandro Lopez ◽  
Florangel Escorcia
Keyword(s):  
Well Log ◽  
Log Data ◽  

2021 ◽  
Author(s):  
Lijun Guan ◽  
Wei Zhang ◽  
Ping Zhang ◽  
Yuqing Yang ◽  
Weiping Cui ◽  
...  

Abstract Tight sandstone reservoirs characterization and evaluation is very difficult based on conventional well log data owing to the extremely low porosity and permeability, and strong heterogeneity. The main accumulation spaces of conventional reservoirs are intergranular pores, and the pore size is the main controlling factor of permeability. However, besides intergranular pores, fractures play much greater important role in accumulating hydrocarbon, improving the pore connectivity and pore structure in tight sandstone reservoirs. Hence, it should be accurately predicted the pore structure dredged by fractures to improve the characterization of tight sandstone reservoirs. Generally, nuclear magnetic resonance (NMR) logging is an effective method to evaluate formation pore structure. However, it cannot be well used in fractured reservoirs because the NMR T2 spectra has no any response for fractures with width <2mm. The borehole electrical image log is usable in characterizing fractured reservoirs. The pore spectrum, which is extracted from the borehole electrical image log, can be used to qualitatively reflect the pore size. Hence, it will play an important role in fractured reservoirs pore structure characterization. In this study, based on the comprehensive analysis of the pore spectra, the corresponding mercury injection capillary pressure (MICP) data and pore-throat radius distributions acquired from core samples, a relationship that connects the 1/POR and capillary pressure (Pc) is proposed. Established a model based on formation classification to transform porosity spectrum into pseudo capillary pressure curve. In addition, a Swanson parameter-based permeability prediction model is also developed to extract fractured formation permeability. Meanwhile, to verify the superiority and otherness of borehole electrical image and NMR log, the model that evaluated reservoirs pore structure from NMR log is also established. Based on the application of the proposed method and models in actual formations, the evaluated pore structure parameters and permeabilities from two types of well log data are compared. The results illustrates that in formations with relative good pore structure, the predicted pore structure parameters and permeabilities from these two types of well log data agree well with the drill stem testing data and core-derived result. However, in low permeability sandstones with relatively poor pore structure, the porosity spectra can be well used to evaluate the pore structure, whereas the characterized pore structure from NMR log is overestimated. With the comprehensive research of reservoirs pore structure and permeability, the fractured tight sandstone formations with development value are precisely identified. This proposed method has greatest advantages that the pore structure of fractured reservoirs can be characterized, and the contribution of fractures to the pore connectivity and permeability can be quantified. it is usable in tight sandstone reservoirs validity prediction.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 804
Author(s):  
Lin Liu ◽  
Xiumei Zhang ◽  
Xiuming Wang

Natural gas hydrate is a new clean energy source in the 21st century, which has become a research point of the exploration and development technology. Acoustic well logs are one of the most important assets in gas hydrate studies. In this paper, an improved Carcione–Leclaire model is proposed by introducing the expressions of frame bulk modulus, shear modulus and friction coefficient between solid phases. On this basis, the sensitivities of the velocities and attenuations of the first kind of compressional (P1) and shear (S1) waves to relevant physical parameters are explored. In particular, we perform numerical modeling to investigate the effects of frequency, gas hydrate saturation and clay on the phase velocities and attenuations of the above five waves. The analyses demonstrate that, the velocities and attenuations of P1 and S1 are more sensitive to gas hydrate saturation than other parameters. The larger the gas hydrate saturation, the more reliable P1 velocity. Besides, the attenuations of P1 and S1 are more sensitive than velocity to gas hydrate saturation. Further, P1 and S1 are almost nondispersive while their phase velocities increase with the increase of gas hydrate saturation. The second compressional (P2) and shear (S2) waves and the third kind of compressional wave (P3) are dispersive in the seismic band, and the attenuations of them are significant. Moreover, in the case of clay in the solid grain frame, gas hydrate-bearing sediments exhibit lower P1 and S1 velocities. Clay decreases the attenuation of P1, and the attenuations of S1, P2, S2 and P3 exhibit little effect on clay content. We compared the velocity of P1 predicted by the model with the well log data from the Ocean Drilling Program (ODP) Leg 164 Site 995B to verify the applicability of the model. The results of the model agree well with the well log data. Finally, we estimate the hydrate layer at ODP Leg 204 Site 1247B is about 100–130 m below the seafloor, the saturation is between 0–27%, and the average saturation is 7.2%.


Author(s):  
Mohammad Farsi ◽  
Nima Mohamadian ◽  
Hamzeh Ghorbani ◽  
David A. Wood ◽  
Shadfar Davoodi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document