Shale Compaction

1973 ◽  
Vol 13 (01) ◽  
pp. 12-22 ◽  
Author(s):  
J.E. Smith

American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc. This paper was prepared for the 46th Annual Fall Meeting of the Society of Petroleum Engineers of AIME, to be held in New Orleans, La., Oct. 3-6, 1971. Permission to copy is restricted to an abstract of not more than 300 words. Illustrations may not be copied. The abstract should contain conspicuous acknowledgment of where and by whom the paper is presented. Publication elsewhere after publication in the JOURNAL OF PETROLEUM TECHNOLOGY or the SOCIETY OF PETROLEUM ENGINEERS JOURNAL is usually granted upon request to the Editor of the appropriate journal provided agreement to give proper credit is made. Discussion of this paper is invited. Three copies of any discussion should be sent to the Society of Petroleum Engineers office. Such discussion may be presented at the above meeting and, with the paper, may be considered for publication in one of the two SPE magazines. Abstract The compaction of shales or other fine-grained compressible rocks is described by a mathematical model, and specific solutions are presented graphically. The model treats the presented graphically. The model treats the upward and downward movements of the water the solid matrix in very extensive, uniform, flat-lying units. It may readily be adapted treat the compaction of sands. The principal elements of the model are:(1)continuity equations for the water and solid matrix;(2)Darcy's law;(3)an expression for the fluid potential;(4)an equation for the total potential;(4)an equation for the total vertical stress;(5)an empirical relationship between porosity and the difference between the total vertical stress and the fluid pressure; and(6)an empirical relationship between permeability and porosity. From these elements an expression is derived for the porosity within the unit in terms of the space and time coordinates and boundary conditions, for the approximation that the densities of the water and the solid matrix are constant. Numerical solutions for the fluid pressure, the total vertical stress, the pressure, the total vertical stress, the porosity, the permeability, and the velocities porosity, the permeability, and the velocities of water and solid matrix were obtained as profiles through the unit at close time intervals, profiles through the unit at close time intervals, and representative results are displayed. The events followed are:shale sedimentation;a time lapse following shale sedimentation;sedimentation of a normally pressured unit over the shale unit; anda final time lapse with no sedimentation. Two boundary conditions for the base of the shale unit are considered:the underlying unit is impermeable, andthe underlying unit is a normally pressured sand. In the latter case, water flows both upward and downward out of the compacting unit. The solutions show that pore water pressures much greater than normal are obtained and may persist for tens or hundreds of millions of years. It is also found that a shale unit rapidly buried beneath a thick normally pressured sand develops a zone near the sand-shale boundary of reduced porosity and permeability in which the pore water pressure permeability in which the pore water pressure gradient is very large. Introduction The presence of low density overpressured shales or mudstones in a sedimentary sequence influences the operations of petroleum exploration, drilling and production. During the exploration phase such low density fine-grained rocks influence the interpretation of seismic and gravity surveys. During the drilling of prospects, the mud casing and log programs and prospects, the mud casing and log programs and safety are affected by high pressures. During production, the possible influx of shale water production, the possible influx of shale water requires investigation.

2020 ◽  
Vol 15 (12) ◽  
pp. 3571-3591
Author(s):  
Bartłomiej Szczepan Olek

AbstractConsolidation rate has significant influence on the settlement of structures founded on soft fine-grained soil. This paper presents the results of a series of small-scale and large-scale Rowe cell consolidation tests with pore water pressure measurements to investigate the factors affecting the consolidation process. Permeability and creep/resistance structure factors were considered as the governing factors. Intact and reconstituted marine clay from the Polish Carpathian Foredeep basin as well as clay–sand mixtures was examined in the present study. The fundamental relationship correlating consolidation degrees based on compression and pore water pressure was assessed to indicate the nonlinear soil behaviour. It was observed that the instantaneous consolidation parameters vary as the process progresses. The instantaneous coefficient of consolidation first drastically increases or decreases with increase in the degree of consolidation and stabilises in the middle stage of the consolidation; it then decreases significantly due to viscoplastic effects occurring in the soil structure. Based on the characteristics of the relationship between coefficient of consolidation and degree of dissipation at the base, the consolidation range that complies with theoretical assumptions was established. Furthermore, the influence of coarser fraction in clay–sand mixtures in controlling the consolidation rates is discussed.


2007 ◽  
Vol 44 (10) ◽  
pp. 1148-1156 ◽  
Author(s):  
Matthew Helinski ◽  
Andy Fourie ◽  
Martin Fahey ◽  
Mostafa Ismail

During the placement of fine-grained cemented mine backfill, the high placement rates and low permeability often result in undrained self-weight loading conditions, when assessed in the conventional manner. However, hydration of the cement in the backfill results in a net volume reduction—the volume of the hydrated cement is less than the combined volume of the cement and water prior to hydration. Though the volume change is small, it occurs in conjunction with the increasing stiffness of the cementing soil matrix, and the result in certain circumstances can be a significant reduction in pore-water pressure as hydration proceeds. In this paper, the implications of this phenomenon in the area of cemented mine backfill are explored. An analytical model is developed to quantify this behaviour under undrained boundary conditions. This model illustrates that the pore-water pressure change is dependent on the amount of volume change associated with the cement hydration, the incremental stiffness change of the soil, and the porosity of the material. Experimental techniques for estimating key characteristics associated with this mechanism are presented. Testing undertaken on two different cement–minefill combinations indicated that the rate of hydration and volumes of water consumed during hydration were unique for each cement–tailings combination, regardless of mix proportions.


2013 ◽  
Vol 50 (9) ◽  
pp. 947-960 ◽  
Author(s):  
Giovanni Calabresi ◽  
Francesco Colleselli ◽  
Domenico Danese ◽  
Gianpaolo Giani ◽  
Claudio Mancuso ◽  
...  

To investigate the hydraulic behaviour of the fine-grained embankments along the mid-course of the Po River, research was carried out on a full-scale physical model, built on the floodplain along the existing embankment and forming a pond. The pond was filled to reproduce historical floods. The prototype was built according to recommendations formulated by the Po River Management Authority. The engineering properties of the foundation soils were investigated by in situ tests and complemented by some suction-controlled laboratory tests. Pore-water pressure was measured in the embankment and in its foundation before, during, and after the experimental reproduction of two floods that occurred in 1976 and 2000. Atmospheric variables were monitored at the prototype site. Monitoring data refer to 6 months of experimental activities. Pore-water pressure measurements were first presented and subsequently interpreted through an isothermal two-dimensional flow approach where boundary flow rates express the evolution of atmospheric variables. The distribution of the pore water provided by this interpretation was used for stability analyses of the prototype. Results from the experimental activities and their interpretation indicate that the river embankment remains extensively unsaturated during floods. Typical suction trends within the embankment, suction-associated soil strength, and the resulting slope stability safety factors are also shown.


2019 ◽  
Vol 106 ◽  
pp. 01013
Author(s):  
Bartłomiej Szczepan Olek

Terzaghi's 1-D consolidation theory is commonly used for prediction of embankment settlement in soft fine-grained soil. Application of this theory is not always effective due to the simplifications of assumed soil behavior under load. This paper examines relationship between the degrees of consolidation determined by pore water pressure measured at the base of the sample and one-dimensional strain. Theoretically, this relationship should be unique, however experimental relationships correlating the degrees of consolidation are found to be non-linear. The article presents the results of multistage consolidation tests with pore water pressure measurements, carried out on intact and reconstituted deep marine clay. Consolidation tests were conducted with uniform stress distribution and single-sided drainage conditions. It was observed that the relationship between degrees of consolidation for intact and reconstituted samples largely divergent from theoretical unique line.


Liquefaction is a phenomenon mainly occurred in saturated fine grained soils under major earthquakes causes tremendous loss to infrastructure. From the literature it has been observed that liquefaction not only occurs in fine sands but also occurs in sands containing some amount of fines particles, which are of less than 75µ in size. Unfortunately there is no clear conclusions given as how effect the fines content on liquefaction resistance of sandy soils. In order to solve above mentioned problem this study was undertaken through stress-controlled cyclic triaxial tests to know the effect of fines content on liquefaction resistance of sandy soils. In this study the program of experimentation was done on base sand and sand mixed with four different combinations of fines like 10%, 20%, 30%, and 40% of fines with base sand by weight.. The main parameters changed in this work were percentage fines and shear stress ratio (CSR ), where the observed parameter was amount of pore water pressure and cycle of loading.. The result showed that, rate of pore water pressure generation during cyclic loading was largely affected by limiting silt content and density index. The trend observed as amount of pore water pressure is increased more than base sand with adding of fines content up to 20%, later the trend observed as reverse. And also noticed that more CSR value increases the pore water pressure generation and decreases the cyclic resistance


Sign in / Sign up

Export Citation Format

Share Document