po river
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 121)

H-INDEX

39
(FIVE YEARS 7)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 258
Author(s):  
Laura Gruppuso ◽  
Alberto Doretto ◽  
Elisa Falasco ◽  
Stefano Fenoglio ◽  
Michele Freppaz ◽  
...  

Streams and rivers are becoming increasingly intermittent in Alpine regions due to the global climate change and related increases of local water abstractions, making it fundamental to investigate the occurrence of supraseasonal drying events and their correlated effects. We aimed to investigate leaf litter decomposition, the C:N ratio of the litter, and changes in associated macroinvertebrate communities in three reaches of the Po River: One upstream, consistently perennial, a perennial mid-reach with high hydrological variability, and an intermittent downstream reach. We placed leaf litter bags of two leaf types—chestnut and oak; both showed comparable decomposition rates, but the remaining litter mass was different and was attributed to the C:N ratio and palatability. Furthermore, (1) in perennial reaches, leaf litter decomposed faster than in the intermittent ones; (2) in intermittent reaches, the C:N ratio showed a decreasing trend in both leaf types, indicating that drying affected the nitrogen consumption, therefore the conditioning phase; (3) associated macroinvertebrate communities were richer and more stable in perennial reaches, where a higher richness and abundance of EPT taxa and shredders was observed. Our results suggest that the variations in the hydrology of mountain streams caused by global climate change could significantly impact on functional processes and biodiversity of benthic communities.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 117
Author(s):  
Mattias Gaglio ◽  
Mariano Bresciani ◽  
Nicola Ghirardi ◽  
Alexandra Nicoleta Muresan ◽  
Mattia Lanzoni ◽  
...  

Aquatic vegetation loss caused substantial decrease of ecosystem processes and services during the last decades, particularly for the capacity of these ecosystems to sequester and store carbon from the atmosphere. This study investigated the extent of aquatic emergent vegetation loss for the period 1985–2018 and the consequent effects on carbon sequestration and storage capacity of Valle Santa wetland, a protected freshwater wetland dominated by Phragmites australis located in the Po river delta Park (Northern Italy), as a function of primary productivity and biomass decomposition, assessed by means of satellite images and experimental measures. The results showed an extended loss of aquatic vegetated habitats during the considered period, with 1989 being the year with higher productivity. The mean breakdown rates of P. australis were 0.00532 d−1 and 0.00228 d−1 for leaf and stem carbon content, respectively, leading to a predicted annual decomposition of 64.6% of the total biomass carbon. For 2018 the carbon sequestration capacity was estimated equal to 0.249 kg C m−2 yr−1, while the carbon storage of the whole wetland was 1.75 × 103 t C (0.70 kg C m−2). Nonetheless, despite the protection efforts over time, the vegetation loss occurred during the last decades significantly decreased carbon sequestration and storage by 51.6%, when comparing 2018 and 1989. No statistically significant effects were found for water descriptors. This study demonstrated that P. australis-dominated wetlands support important ecosystem processes and should be regarded as an important carbon sink under an ecosystem services perspective, with the aim to maximize their capacity to mitigate climate change.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 64
Author(s):  
Giulia Mencattelli ◽  
Federica Iapaolo ◽  
Federica Monaco ◽  
Giovanna Fusco ◽  
Claudio de Martinis ◽  
...  

In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008–2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.


2021 ◽  
Author(s):  
Lorenzo Alfieri ◽  
Francesco Avanzi ◽  
Fabio Delogu ◽  
Simone Gabellani ◽  
Giulia Bruno ◽  
...  

Abstract. Satellite Earth observations (EO) are an accurate and reliable data source for atmospheric and environmental science. Their increasing spatial and temporal resolution, as well as the seamless availability over ungauged regions, make them appealing for hydrological modeling. This work shows recent advances in the use of high-resolution satellite-based Earth observation data in hydrological modelling. In a set of experiments, the distributed hydrological model Continuum is set up for the Po River Basin (Italy) and forced, in turn, by satellite precipitation and evaporation, while satellite-derived soil moisture and snow depths are ingested into the model structure through a data-assimilation scheme. Further, satellite-based estimates of precipitation, evaporation and river discharge are used for hydrological model calibration, and results are compared with those based on ground observations. Despite the high density of conventional ground measurements and the strong human influence in the focus region, all satellite products show strong potential for operational hydrological applications, with skillful estimates of river discharge throughout the model domain. Satellite-based evaporation and snow depths marginally improve (by 2 % and 4 %) the mean Kling-Gupta efficiency (KGE) at 27 river gauges, compared to a baseline simulation (KGEmean = 0.51) forced by high-quality conventional data. Precipitation has the largest impact on the model output, though the satellite dataset on average shows poorer skills compared to conventional data. Interestingly, a model calibration heavily relying on satellite data, as opposed to conventional data, provides a skillful reconstruction of river discharges, paving the way to fully satellite-driven hydrological applications.


Author(s):  
Rita Nogherotto ◽  
Adriano Fantini ◽  
Francesca Raffaele ◽  
Fabio Sante ◽  
Francesco Dottori ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3377
Author(s):  
Giuseppe Formetta ◽  
Jonghun Kam ◽  
Sahar Sadeghi ◽  
Glenn Tootle ◽  
Thomas Piechota

Winter precipitation (snowpack) in the European Alps provides a critical source of freshwater to major river basins such as the Danube, Rhine, and Po. Previous research identified Atlantic Ocean variability and hydrologic responses in the European Alps. The research presented here evaluates Atlantic Sea Surface Temperatures (SSTs) and European Alps winter precipitation variability using Singular Value Decomposition. Regions in the north and mid-Atlantic from the SSTs were identified as being tele-connected with winter precipitation in the European Alps. Indices were generated for these Atlantic SST regions to use in prediction of precipitation. Regression and non-parametric models were developed using the indices as predictors and winter precipitation as the predictand for twenty-one alpine precipitation stations in Austria, Germany, and Italy. The proposed framework identified three regions in the European Alps in which model skill ranged from excellent (West Region–Po River Basin), to good (East Region) to poor (Central Region). A novel approach for forecasting future winter precipitation utilizing future projections of Atlantic SSTs predicts increased winter precipitation until ~2040, followed by decreased winter precipitation until ~2070, and then followed by increasing winter precipitation until ~2100.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 140
Author(s):  
Yuri Taddia ◽  
Corinne Corbau ◽  
Joana Buoninsegni ◽  
Umberto Simeoni ◽  
Alberto Pellegrinelli

Anthropogenic marine debris (AMD) represent a global threat for aquatic environments. It is important to locate and monitor the distribution and presence of macroplastics along beaches to prevent degradation into microplastics (MP), which are potentially more harmful and more difficult to remove. UAV imaging represents a quick method for acquiring pictures with a ground spatial resolution of a few centimeters. In this work, we investigate strategies for AMD mapping on beaches with different ground resolutions and with elevation and multispectral data in support of RGB orthomosaics. Operators with varying levels of expertise and knowledge of the coastal environment map the AMD on four to five transects manually, using a range of photogrammetric tools. The initial survey was repeated after one year; in both surveys, beach litter was collected and further analyzed in the laboratory. Operators assign three levels of confidence when recognizing and describing AMD. Preliminary validation of results shows that items identified with high confidence were almost always classified properly. Approaching the detected items in terms of surface instead of a simple count increased the percentage of mapped litter significantly when compared to those collected. Multispectral data in near-infrared (NIR) wavelengths and digital surface models (DSMs) did not significantly improve the efficiency of manual mapping, even if vegetation features were removed using NDVI maps. In conclusion, this research shows that a good solution for performing beach AMD mapping can be represented by using RGB imagery with a spatial resolution of about 200 pix/m for detecting macroplastics and, in particular, focusing on the largest items. From the point of view of assessing and monitoring potential sources of MP, this approach is not only feasible but also quick, practical, and sustainable.


2021 ◽  
Author(s):  
Paolo Filippucci ◽  
Luca Brocca ◽  
Raphael Quast ◽  
Luca Ciabatta ◽  
Carla Saltalippi ◽  
...  

Abstract. Satellite sensors to infer rainfall measurements have become widely available in the last years, but their spatial resolution usually exceed 10 kilometres, due to technological limitation. This poses an important constraint on their use for application such as water resource management, index insurance evaluation or hydrological models, which require more and more detailed information. In this work, the algorithm SM2RAIN (Soil Moisture to Rain) for rainfall estimation is applied to a high resolution soil moisture product derived from Sentinel-1, named S1-RT1, characterized by 1 km spatial resolution (500 m spacing), and to the 25 km ASCAT soil moisture (12.5 km spacing), resampled to the same grid of S1-RT1, to obtain rainfall products with the same spatial and temporal resolution over the Po River basin. In order to overcome the need of calibration and to allow its global application, a parameterized version of SM2RAIN algorithm was adopted along with the standard one. The capabilities in estimating rainfall of each obtained product were then compared, to assess both the parameterized SM2RAIN performances and the added value of Sentinel-1 high spatial resolution. The results show that good estimates of rainfall are obtainable from Sentinel-1 when considering aggregation time steps greater than 1 day, since to the low temporal resolution of this sensor (from 1.5 to 4 days over Europe) prevents its application to infer daily rainfall. On average, the ASCAT derived rainfall product performs better than S1-RT1 one, even if the performances are equally good when 30 days accumulated rainfall is considered, being the mean Pearson’s correlation of the rainfall obtained from ASCAT and S1-RT1 equal to 0.74 and 0.73, respectively, using the parameterized SM2RAIN. Notwithstanding this, the products obtained from Sentinel-1 outperform those from ASCAT in specific areas, like in valleys inside mountain regions and most of the plains, confirming the added value of the high spatial resolution information in obtaining spatially detailed rainfall. Finally, the parameterized products performances are similar to those obtained with SM2RAIN calibration, confirming the reliability of the parameterized algorithm for rainfall estimation in this area and fostering the possibility to apply SM2RAIN worldwide even without the availability of a rainfall benchmark product.


Sign in / Sign up

Export Citation Format

Share Document