Characterization of a Carbonate Reservoir Using Pressure-Transient Tests and Production Logs: Tengiz Field, Kazakstan

Author(s):  
K.T. Chambers ◽  
W.S. Hallager ◽  
C.S. Kabir ◽  
R.A. Garber
2001 ◽  
Vol 4 (04) ◽  
pp. 250-259
Author(s):  
K.T. Chambers ◽  
W.S. Hallager ◽  
C.S. Kabir ◽  
R.A. Garber

Summary The combination of pressure-transient and production-log (PL) analyses has proved valuable in characterizing reservoir flow behavior in the giant Tengiz field. Among the important findings is the absence of clear dual-porosity flow. This observation contradicts an earlier interpretation that the reservoir contains a well-connected, natural fracture network. Fracturing and other secondary porosity mechanisms play a role in enhancing matrix permeability, but their impact is insufficient to cause dual-porosity flow behavior to develop. Flow profiles measured with production logs consistently show several thin (10 to 30 ft) zones dominating well deliverability over the thick (up to 1,040 ft) perforation intervals at Tengiz. A comparison of PL results and core descriptions reveals a good correlation between high deliverability zones and probable exposure surfaces in the carbonate reservoir. Contrary to earlier postulations, results obtained from pressure-transient and PL data at Tengiz do not support rate-sensitive productivity indices (PI's). Inclusion of rate variations in reconciling buildup and drawdown test results addressed this issue. We developed wellbore hydraulic models and calibrated them with PL data for extending PI results to wells that do not have measured values. A simplified equation-of-state (EOS) fluid description was an important component of the models because the available black-oil fluid correlations do not provide reliable results for the 47°API volatile Tengiz oil. Clear trends in reservoir quality emerge from the PI results. Introduction A plethora of publications exists on transient testing. However, only a few papers address the issue of combining multidisciplinary data to understand reservoir flow behavior (Refs. 1 through 4 are worthy of note). We used a synergistic approach by combining geology, petrophysics, transient tests, PL's, and wellbore-flow modeling to characterize the reservoir flow behavior in the Tengiz field. Understanding this flow behavior is crucial to formulating guidelines for reservoir management. Permeability estimation from pressure-transient data is sensitive to the effective reservoir thickness contributing to flow. Unfortunately, difficulties associated with the calibration of old openhole logs, sparse core coverage, and a major diagenetic overprint of solid bitumen combine to limit the identification of an effective reservoir at Tengiz based on openhole log data alone. Consequently, PL's have been used to identify an effective reservoir in terms of its flow potential. A limitation of production logs is that they only measure fluid entering the wellbore and are not necessarily indicative of flow in the reservoir away from the well. Pressure data from buildup and drawdown tests, on the other hand, provide insights into flow behavior both near the well and farther into the reservoir. The combination of pressure-transient analysis using simultaneous downhole pressure and flow-rate data along with measured production profiles provides an opportunity to reconcile near-wellbore and in-situ flow behavior. Expansion of reservoir fluids along with formation compaction provides the current drive mechanism at Tengiz because the reservoir is undersaturated by over 8,000 psia. As the field is produced, reservoir stresses will increase in response to pressure decreases.5 Increased stresses can significantly reduce permeability if natural fractures provide the primary flow capacity in the reservoir. Wells producing at high drawdowns provide an opportunity to investigate the pressure sensitivity of fractures within the near-wellbore region. Early interpretations of pressure-transient tests at Tengiz uncovered a significant discrepancy between buildup and drawdown permeability, despite efforts to carefully control flow rates during the tests. Drawdown permeabilities typically exceeded the buildup results by 20 to 50%. Although this finding appears counterintuitive to the expectation that drawdowns (that is, higher stresses) would lead to lower permeability, it indicated a possible stress dependence on well deliverability. The method proposed by Kabir6 to reconcile differences between drawdown and buildup results proved useful in addressing this issue. The opportunities to collect PL and downhole pressure data at Tengiz are limited by mechanical conditions in some wells and by the requirement to meet the processing capacity of the oil and gas plant. On the other hand, accurate wellhead-pressure and flow-rate data are routinely available. Wellbore hydraulic calculations provide a basis for calculating flowing bottomhole pressures (FBHP's) with the available surface data. Calculated FBHP's can be combined with available reservoir pressure data to determine PI's for wells lacking bottomhole measurements. The ability to compute accurate fluid properties is critical in applying this approach. Unfortunately, the black-oil correlations routinely used in wellbore hydraulic calculations7–9 do not provide reliable results for the volatile Tengiz oil. We obtained good agreement between laboratory measurements of fluid properties and calculated values using a simplified EOS.10 Surface and bottomhole data collected during PL operations provide a basis for validating wellbore hydraulic calculations. Networks of natural fractures can dominate the producing behavior of carbonate reservoirs such as Tengiz. Early identification of fractured reservoir behavior is critical to the successful development of these types of reservoirs.11 We present an approach for resolving reservoir flow behavior by combining production profiles, pressure-transient tests, and wellbore hydraulic calculations. Furthermore, we discuss the PL procedures developed to allow acquisition of the data required for all three types of analyses in a single logging run. Field examples from Tengiz highlight the usefulness of this approach.


2014 ◽  
Author(s):  
Umer Farooq ◽  
Reza Iskandar ◽  
El Sayed Moustafa Radwan ◽  
Magdy Ahmed H Hozayen

2021 ◽  
Author(s):  
Hans Christian Walker ◽  
Anton Shchipanov ◽  
Harald Selseng

Abstract The Johan Sverdrup field located on the Norwegian Continental Shelf (NCS) started its production in October 2019. The field is considered as a pivotal development in the view of sustainable long-term production and developments on the NCS as well as creating jobs and revenue. The field is operated with advanced well and reservoir surveillance systems including Permanent Downhole Gauges (PDG), Multi-Phase Flow-Meters (MPFM) and seismic Permanent Reservoir Monitoring (PRM). This provides an exceptional basis for reservoir characterization and permanent monitoring. This study focuses on reservoir characterization to improve evaluations of sand permeability-thickness and fault transmissibility. Permanent monitoring of the reservoir with PDG / MPFM has provided an excellent basis for applying different methods of Pressure Transient Analysis (PTA) including analysis of well interference and time-lapse PTA. Interpretation of pressure transient data is today based on both analytical and numerical reservoir simulations (fit-for-purpose models). In this study, such models of the Johan Sverdrup reservoir regions have been assembled, using geological and PVT data, results of seismic interpretations and laboratory experiments. Uncertainties in these data were used to guide and frame the scope of the study. The interference analysis has confirmed communication between the wells located in the same and different reservoir regions, thus revealing hydraulic communication through faults. Sensitivities using segment reservoir simulations of the interference tests with different number of wells have shown the importance of including all the active wells, otherwise the interpretation may give biased results. The estimates for sand permeability-thickness as well as fault leakage obtained from the interference analysis were further applied in simulations of the production history using the fit-for-purpose reservoir models. The production history contains many pressure transients associated with both flowing and shut-in periods. Time-lapse PTA was focused on extraction and history matching of these pressure transients. The simulations have provided reasonable match of the production history and the time-lapse pressure transients including derivatives. This has confirmed the results of the interference analysis for permeability-thickness and fault leakage used as input for these simulations. Well interference is also the dominating factor driving the pressure transient responses. Drainage area around the wells is quickly established for groups of the wells analyzed due to the extreme permeability of the reservoir. It was possible to match many transient responses with segment models, however mismatch for some wells can be explained by the disregard of wells outside the segments, especially injectors. At the same time, it is a useful indication of communication between the regions. The study has improved reservoir characterization of the Johan Sverdrup field, also contributing to field implementation of combined PTA methods.


Sign in / Sign up

Export Citation Format

Share Document