Characterization of a Carbonate Reservoir With Pressure-Transient Tests and Production Logs: Tengiz Field, Kazakhstan

2001 ◽  
Vol 4 (04) ◽  
pp. 250-259
Author(s):  
K.T. Chambers ◽  
W.S. Hallager ◽  
C.S. Kabir ◽  
R.A. Garber

Summary The combination of pressure-transient and production-log (PL) analyses has proved valuable in characterizing reservoir flow behavior in the giant Tengiz field. Among the important findings is the absence of clear dual-porosity flow. This observation contradicts an earlier interpretation that the reservoir contains a well-connected, natural fracture network. Fracturing and other secondary porosity mechanisms play a role in enhancing matrix permeability, but their impact is insufficient to cause dual-porosity flow behavior to develop. Flow profiles measured with production logs consistently show several thin (10 to 30 ft) zones dominating well deliverability over the thick (up to 1,040 ft) perforation intervals at Tengiz. A comparison of PL results and core descriptions reveals a good correlation between high deliverability zones and probable exposure surfaces in the carbonate reservoir. Contrary to earlier postulations, results obtained from pressure-transient and PL data at Tengiz do not support rate-sensitive productivity indices (PI's). Inclusion of rate variations in reconciling buildup and drawdown test results addressed this issue. We developed wellbore hydraulic models and calibrated them with PL data for extending PI results to wells that do not have measured values. A simplified equation-of-state (EOS) fluid description was an important component of the models because the available black-oil fluid correlations do not provide reliable results for the 47°API volatile Tengiz oil. Clear trends in reservoir quality emerge from the PI results. Introduction A plethora of publications exists on transient testing. However, only a few papers address the issue of combining multidisciplinary data to understand reservoir flow behavior (Refs. 1 through 4 are worthy of note). We used a synergistic approach by combining geology, petrophysics, transient tests, PL's, and wellbore-flow modeling to characterize the reservoir flow behavior in the Tengiz field. Understanding this flow behavior is crucial to formulating guidelines for reservoir management. Permeability estimation from pressure-transient data is sensitive to the effective reservoir thickness contributing to flow. Unfortunately, difficulties associated with the calibration of old openhole logs, sparse core coverage, and a major diagenetic overprint of solid bitumen combine to limit the identification of an effective reservoir at Tengiz based on openhole log data alone. Consequently, PL's have been used to identify an effective reservoir in terms of its flow potential. A limitation of production logs is that they only measure fluid entering the wellbore and are not necessarily indicative of flow in the reservoir away from the well. Pressure data from buildup and drawdown tests, on the other hand, provide insights into flow behavior both near the well and farther into the reservoir. The combination of pressure-transient analysis using simultaneous downhole pressure and flow-rate data along with measured production profiles provides an opportunity to reconcile near-wellbore and in-situ flow behavior. Expansion of reservoir fluids along with formation compaction provides the current drive mechanism at Tengiz because the reservoir is undersaturated by over 8,000 psia. As the field is produced, reservoir stresses will increase in response to pressure decreases.5 Increased stresses can significantly reduce permeability if natural fractures provide the primary flow capacity in the reservoir. Wells producing at high drawdowns provide an opportunity to investigate the pressure sensitivity of fractures within the near-wellbore region. Early interpretations of pressure-transient tests at Tengiz uncovered a significant discrepancy between buildup and drawdown permeability, despite efforts to carefully control flow rates during the tests. Drawdown permeabilities typically exceeded the buildup results by 20 to 50%. Although this finding appears counterintuitive to the expectation that drawdowns (that is, higher stresses) would lead to lower permeability, it indicated a possible stress dependence on well deliverability. The method proposed by Kabir6 to reconcile differences between drawdown and buildup results proved useful in addressing this issue. The opportunities to collect PL and downhole pressure data at Tengiz are limited by mechanical conditions in some wells and by the requirement to meet the processing capacity of the oil and gas plant. On the other hand, accurate wellhead-pressure and flow-rate data are routinely available. Wellbore hydraulic calculations provide a basis for calculating flowing bottomhole pressures (FBHP's) with the available surface data. Calculated FBHP's can be combined with available reservoir pressure data to determine PI's for wells lacking bottomhole measurements. The ability to compute accurate fluid properties is critical in applying this approach. Unfortunately, the black-oil correlations routinely used in wellbore hydraulic calculations7–9 do not provide reliable results for the volatile Tengiz oil. We obtained good agreement between laboratory measurements of fluid properties and calculated values using a simplified EOS.10 Surface and bottomhole data collected during PL operations provide a basis for validating wellbore hydraulic calculations. Networks of natural fractures can dominate the producing behavior of carbonate reservoirs such as Tengiz. Early identification of fractured reservoir behavior is critical to the successful development of these types of reservoirs.11 We present an approach for resolving reservoir flow behavior by combining production profiles, pressure-transient tests, and wellbore hydraulic calculations. Furthermore, we discuss the PL procedures developed to allow acquisition of the data required for all three types of analyses in a single logging run. Field examples from Tengiz highlight the usefulness of this approach.

1966 ◽  
Vol 6 (03) ◽  
pp. 206-212 ◽  
Author(s):  
I. Fatt ◽  
M. Maleki ◽  
R.N. Upadhyay

Abstract Conventional laboratory core analysis tests on samples of two limestone reservoir rocks indicate that about 20 per cent of PV is in dead-end pores. These tests (electric logging formation factor. mercury injection capillary pressure and miscible displacement) were carried out on 3/4-in. diameter test plugs. Test results show a clear difference between these samples and sandstone or homogeneous limestone reservoir rock. Although the amount of dead-end pore space can be only roughly estimated, the presence of such pore space seems clearly indicated. Pressure transient studies also show presence of dead-end PV. Although they do not give quantitative results, pressure transient data yield a reasonable estimate of the size of the neck connecting dead-end pores to the main flow channels. Introduction Equations conventionally used to describe reservoir flow behavior contain the implicit assumption that all connected pore spaces contributed to both porosity and permeability. Several authors have pointed out the changes in pressure transient behavior and in electric log interpretation that may result if this assumption is incorrect and, instead, dead-end or cul-de-sac pores are present. There is a need for laboratory tests that can detect presence of dead-end pores in core samples. With such information on hand the petroleum engineer can make more rational use of the mathematical tools now available for analysis of reservoir flow behavior. This paper describes laboratory studies designed to detect and, if possible, give a quantitative measure of dead-end PV in laboratory-size core plugs. Three reservoir rocks were used, two of which were limestones suspected of having dead- end pore spaces and a well-known sandstone, used as a comparison standard, in which there is believed to be little or no dead-end pore space. All the studies were designed to measure the natural dead-end PV; i.e., the pore space which is dead-ended because of rock structure. During multiphase flow in a rock without dead-end pores, some parts of one of the phases can become surrounded by the other, thereby giving (for certain flow behavior) an effective dead-end PV 8,9. Such behavior will not be described here. FORMATION FACTOR THEORY One of the simplest laboratory measurements which can be made on core plugs is the electric logging formation factor F. By definition: (1) where Ro is the resistivity of the core plug saturated with a saline solution of resistivity Rw. Difficulties in using this definition of F may arise when the solid framework of the rock is electrically conducting. These difficulties may be largely circumvented by using a highly conducting saline solution so that the conduction contribution of the solid is negligible. There are no useful theoretical relationships between F and the porosity phi. A widely used empirical relation is the one given by Archie: (2) where m, called the cementation factor, is expected to be a constant for a given type of rock. Pirson shows that for reservoir rocks, m varies from about 1.3 for loosely cemented sandstones to 2.2 for highly cemented sandstones or carbonate rocks. SPEJ P. 206ˆ


1983 ◽  
Vol 23 (05) ◽  
pp. 727-742 ◽  
Author(s):  
Larry C. Young ◽  
Robert E. Stephenson

A procedure for solving compositional model equations is described. The procedure is based on the Newton Raphson iteration method. The equations and unknowns in the algorithm are ordered in such a way that different fluid property correlations can be accommodated leadily. Three different correlations have been implemented with the method. These include simplified correlations as well as a Redlich-Kwong equation of state (EOS). The example problems considered area conventional waterflood problem,displacement of oil by CO, andthe displacement of a gas condensate by nitrogen. These examples illustrate the utility of the different fluid-property correlations. The computing times reported are at least as low as for other methods that are specialized for a narrower class of problems. Introduction Black-oil models are used to study conventional recovery techniques in reservoirs for which fluid properties can be expressed as a function of pressure and bubble-point pressure. Compositional models are used when either the pressure. Compositional models are used when either the in-place or injected fluid causes fluid properties to be dependent on composition also. Examples of problems generally requiring compositional models are primary production or injection processes (such as primary production or injection processes (such as nitrogen injection) into gas condensate and volatile oil reservoirs and (2) enhanced recovery from oil reservoirs by CO or enriched gas injection. With deeper drilling, the frequency of gas condensate and volatile oil reservoir discoveries is increasing. The drive to increase domestic oil production has increased the importance of enhanced recovery by gas injection. These two factors suggest an increased need for compositional reservoir modeling. Conventional reservoir modeling is also likely to remain important for some time. In the past, two separate simulators have been developed and maintained for studying these two classes of problems. This result was dictated by the fact that compositional models have generally required substantially greater computing time than black-oil models. This paper describes a compositional modeling approach paper describes a compositional modeling approach useful for simulating both black-oil and compositional problems. The approach is based on the use of explicit problems. The approach is based on the use of explicit flow coefficients. For compositional modeling, two basic methods of solution have been proposed. We call these methods "Newton-Raphson" and "non-Newton-Raphson" methods. These methods differ in the manner in which a pressure equation is formed. In the Newton-Raphson method the iterative technique specifies how the pressure equation is formed. In the non-Newton-Raphson method, the composition dependence of certain ten-ns is neglected to form the pressure equation. With the non-Newton-Raphson pressure equation. With the non-Newton-Raphson methods, three to eight iterations have been reported per time step. Our experience with the Newton-Raphson method indicates that one to three iterations per tune step normally is sufficient. In the present study a Newton-Raphson iteration sequence is used. The calculations are organized in a manner which is both efficient and for which different fluid property descriptions can be accommodated readily. Early compositional simulators were based on K-values that were expressed as a function of pressure and convergence pressure. A number of potential difficulties are inherent in this approach. More recently, cubic equations of state such as the Redlich-Kwong, or Peng-Robinson appear to be more popular for the correlation Peng-Robinson appear to be more popular for the correlation of fluid properties. SPEJ p. 727


2015 ◽  
Vol 18 (02) ◽  
pp. 187-204 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features in many well-known reservoirs. Naturally fractured reservoirs include fractured igneous, metamorphic, and sedimentary rocks (matrix). Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to numerous fractures that have varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (rather than connected-network dual-porosity systems). In this paper, we investigate the pressure-transient behavior of continuously and discretely naturally fractured reservoirs with semianalytical solutions. These fractured reservoirs can contain periodically or arbitrarily distributed finite- and/or infinite-conductivity fractures with different lengths and orientations. Unlike the single-derivative shape of the Warren and Root (1963) model, fractured reservoirs exhibit diverse pressure behaviors as well as more than 10 flow regimes. There are seven important factors that dominate the pressure-transient test as well as flow-regime behaviors of fractured reservoirs: (1) fractures intersect the wellbore parallel to its axis, with a dipping angle of 90° (vertical fractures), including hydraulic fractures; (2) fractures intersect the wellbore with dipping angles from 0° to less than 90°; (3) fractures are in the vicinity of the wellbore; (4) fractures have extremely high or low fracture and fault conductivities; (5) fractures have various sizes and distributions; (6) fractures have high and low matrix block permeabilities; and (7) fractures are damaged (skin zone) as a result of drilling and completion operations and fluids. All flow regimes associated with these factors are shown for a number of continuously and discretely fractured reservoirs with different well and fracture configurations. For a few cases, these flow regimes were compared with those from the field data. We performed history matching of the pressure-transient data generated from our discretely and continuously fractured reservoir models with the Warren and Root (1963) dual-porosity-type models, and it is shown that they yield incorrect reservoir parameters.


2010 ◽  
Author(s):  
Ajay Kumar ◽  
Aks Kakani ◽  
Calvert Stefan ◽  
Sutapa Bhadra ◽  
Arpana Sarkar ◽  
...  

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. D75-D82
Author(s):  
Alireza Shahin ◽  
Mike Myers ◽  
Lori Hathon

Joint modeling and inversion of frequency-dependent dielectric constant and electrical resistivity well-log measurements has been addressed in literature in recent years. However, this problem is not studied for dual-porosity carbonate formations. Besides, the salinity and matrix dielectric constant are presumed to be known in previous studies. We have combined a model for brine dielectric constant and two laboratory-supported models for the electrical resistivity and dielectric constant of dual-porosity carbonates. Using this methodology, we replicate electrical resistivity and dielectric well-log measurements. Using a stochastic global optimization algorithm, we formulate a joint inversion workflow to estimate petrophysical properties of interest. For a constructed dual-porosity carbonate reservoir, we determine that the inversion workflow matches the forward-modeled data for the oil column, water column, and transition zone. We also found that our inversion workflow is capable to retrieve local model parameters (water-filled intergranular porosity and water-filled vuggy porosity) and global model parameters (matrix dielectric constant, lithology exponents for intergranular and vuggy pores, and salinity) with reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document