reservoir simulations
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
pp. 55-82
Author(s):  
Abouzar Choubineh ◽  
Jie Chen ◽  
Frans Coenen ◽  
Fei Ma ◽  
David A. Wood

2021 ◽  
Author(s):  
Carlo Cristiano Stabile ◽  
Marco Barbiero ◽  
Giorgio Fighera ◽  
Laura Dovera

Abstract Optimizing well locations for a green field is critical to mitigate development risks. Performing such workflows with reservoir simulations is very challenging due to the huge computational cost. Proxy models can instead provide accurate estimates at a fraction of the computing time. This study presents an application of new generation functional proxies to optimize the well locations in a real oil field with respect to the actualized oil production on all the different geological realizations. Proxies are built with the Universal Trace Kriging and are functional in time allowing to actualize oil flows over the asset lifetime. Proxies are trained on the reservoir simulations using randomly sampled well locations. Two proxies are created for a pessimistic model (P10) and a mid-case model (P50) to capture the geological uncertainties. The optimization step uses the Non-dominated Sorting Genetic Algorithm, with discounted oil productions of the two proxies, as objective functions. An adaptive approach was employed: optimized points found from a first optimization were used to re-train the proxy models and a second run of optimization was performed. The methodology was applied on a real oil reservoir to optimize the location of four vertical production wells and compared against reference locations. 111 geological realizations were available, in which one relevant uncertainty is the presence of possible compartments. The decision space represented by the horizontal translation vectors for each well was sampled using Plackett-Burman and Latin-Hypercube designs. A first application produced a proxy with poor predictive quality. Redrawing the areas to avoid overlaps and to confine the decision space of each well in one compartment, improved the quality. This suggests that the proxy predictive ability deteriorates in presence of highly non-linear responses caused by sealing faults or by well interchanging positions. We then followed a 2-step adaptive approach: a first optimization was performed and the resulting Pareto front was validated with reservoir simulations; to further improve the proxy quality in this region of the decision space, the validated Pareto front points were added to the initial dataset to retrain the proxy and consequently rerun the optimization. The final well locations were validated on all 111 realizations with reservoir simulations and resulted in an overall increase of the discounted production of about 5% compared to the reference development strategy. The adaptive approach, combined with functional proxy, proved to be successful in improving the workflow by purposefully increasing the training set samples with data points able to enhance the optimization step effectiveness. Each optimization run performed relies on about 1 million proxy evaluations which required negligible computational time. The same workflow carried out with standard reservoir simulations would have been practically unfeasible.


2021 ◽  
Author(s):  
Finlay Bertram ◽  
Terje Moen ◽  
Trygve Rinde ◽  
Morten Hansen Jondahl ◽  
Reidar Barfod Schüller

Abstract The methodology presented here will expand on current modeling of Autonomous Inflow Control Devices (AICD) to generalize for a wider range of fluid flow rates and phases. It will also address the challenges of modeling multiphase behavior of the reservoir fluid flow. This paper presents proposed methods for selected devices, and device models supported by simulations. The proposed methods show the potential for qualified benchmarking of Inflow Control Technology (ICT) completed wells in dynamic reservoir simulations compared to the generic models currently in use. New single-phase models for segregated and sequential flow are presented, and these have a potential for greatly simplifying mass flowrate predictions for multi-phase flow leading to more accurate analysis within dynamic reservoir simulators.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7727
Author(s):  
Daniela A. Arias Ortiz ◽  
Lukasz Klimkowski ◽  
Thomas Finkbeiner ◽  
Tadeusz W. Patzek

We propose three idealized hydraulic fracture geometries (“fracture scenarios”) likely to occur in shale oil reservoirs characterized by high pore pressure and low differential in situ stresses. We integrate these geometries into a commercial reservoir simulator (CMG-IMEX) and examine their effect on reservoir fluids production. Our first, reference fracture scenario includes only vertical, planar hydraulic fractures. The second scenario has stimulated vertical natural fractures oriented perpendicularly to the vertical hydraulic fractures. The third fracture scenario has stimulated horizontal bedding planes intersecting the vertical hydraulic fractures. This last scenario may occur in mudrock plays characterized by high pore pressure and transitional strike-slip to reverse faulting stress regimes. We demonstrate that the vertical and planar fractures are an oversimplification of the hydraulic fracture geometry in anisotropic shale plays. They fail to represent the stimulated volume geometric complexity in the reservoir simulations and may confuse hydrocarbon production forecast. We also show that stimulating mechanically weak bedding planes harms hydrocarbon production, while stimulated natural fractures may enhance initial production. Our findings reveal that stimulated horizontal bedding planes might decrease the cumulative hydrocarbon production by as much as 20%, and the initial hydrocarbon production by about 50% compared with the reference scenario. We present unique reservoir simulations that enable practical assessment of the impact of varied hydraulic fracture configurations on hydrocarbon production and highlight the importance of constraining present-day in situ stress state and pore pressure conditions to obtain a realistic hydrocarbon production forecast.


2021 ◽  
Author(s):  
Hans Christian Walker ◽  
Anton Shchipanov ◽  
Harald Selseng

Abstract The Johan Sverdrup field located on the Norwegian Continental Shelf (NCS) started its production in October 2019. The field is considered as a pivotal development in the view of sustainable long-term production and developments on the NCS as well as creating jobs and revenue. The field is operated with advanced well and reservoir surveillance systems including Permanent Downhole Gauges (PDG), Multi-Phase Flow-Meters (MPFM) and seismic Permanent Reservoir Monitoring (PRM). This provides an exceptional basis for reservoir characterization and permanent monitoring. This study focuses on reservoir characterization to improve evaluations of sand permeability-thickness and fault transmissibility. Permanent monitoring of the reservoir with PDG / MPFM has provided an excellent basis for applying different methods of Pressure Transient Analysis (PTA) including analysis of well interference and time-lapse PTA. Interpretation of pressure transient data is today based on both analytical and numerical reservoir simulations (fit-for-purpose models). In this study, such models of the Johan Sverdrup reservoir regions have been assembled, using geological and PVT data, results of seismic interpretations and laboratory experiments. Uncertainties in these data were used to guide and frame the scope of the study. The interference analysis has confirmed communication between the wells located in the same and different reservoir regions, thus revealing hydraulic communication through faults. Sensitivities using segment reservoir simulations of the interference tests with different number of wells have shown the importance of including all the active wells, otherwise the interpretation may give biased results. The estimates for sand permeability-thickness as well as fault leakage obtained from the interference analysis were further applied in simulations of the production history using the fit-for-purpose reservoir models. The production history contains many pressure transients associated with both flowing and shut-in periods. Time-lapse PTA was focused on extraction and history matching of these pressure transients. The simulations have provided reasonable match of the production history and the time-lapse pressure transients including derivatives. This has confirmed the results of the interference analysis for permeability-thickness and fault leakage used as input for these simulations. Well interference is also the dominating factor driving the pressure transient responses. Drainage area around the wells is quickly established for groups of the wells analyzed due to the extreme permeability of the reservoir. It was possible to match many transient responses with segment models, however mismatch for some wells can be explained by the disregard of wells outside the segments, especially injectors. At the same time, it is a useful indication of communication between the regions. The study has improved reservoir characterization of the Johan Sverdrup field, also contributing to field implementation of combined PTA methods.


Author(s):  
Abdulla J. Abou-Kassem ◽  
Anas Sidahmed ◽  
Omar Kotb ◽  
Mohammad Haftani ◽  
Alireza Nouri

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Thune ◽  
Xing Cai ◽  
Alf Birger Rustad

AbstractParallel computations have become standard practice for simulating the complicated multi-phase flow in a petroleum reservoir. Increasingly sophisticated numerical techniques have been developed in this context. During the chase of algorithmic superiority, however, there is a risk of forgetting the ultimate goal, namely, to efficiently simulate real-world reservoirs on realistic parallel hardware platforms. In this paper, we quantitatively analyse the negative performance impact caused by non-contributing computations that are associated with the “ghost computational cells” per subdomain, which is an insufficiently studied subject in parallel reservoir simulation. We also show how these non-contributing computations can be avoided by reordering the computational cells of each subdomain, such that the ghost cells are grouped together. Moreover, we propose a new graph-edge weighting scheme that can improve the mesh partitioning quality, aiming at a balance between handling the heterogeneity of geological properties and restricting the communication overhead. To put the study in a realistic setting, we enhance the open-source Flow simulator from the OPM framework, and provide comparisons with industrial-standard simulators for real-world reservoir models.


Author(s):  
Fahad I. Syed ◽  
Shahin Negahban ◽  
Amirmasoud K. Dahaghi

AbstractThis paper presents an assessment of infill drilling opportunities in a complex multi-layered heterogeneous carbonate formation located in Abu Dhabi offshore. The subject field was developed last century and is currently undergoing further development with line drive horizontal wells. The field is being redeveloped for improved oil recovery at higher production rates with long horizontal wells. An infill assessment process is defined using sector model reservoir simulations for the specific reservoir. Reservoir simulations are performed on pattern sector models to establish the optimum grid for infill evaluation. Also, the models with an appropriate grid size are used to optimize infill placement (vertical and lateral well placement) and infill drilling timing for a couple of geologically similar areas. In the second step, the sector model results are applied to test the full-field infill development plan. The relatively homogeneous geological area shows very uniform displacement with 1-km spaced wells and gives no considerable benefit of incremental recovery through infill drilling. However, in a comparatively heterogeneous geological area, considerable incremental oil recovery is quantified. In brief, this paper presents a detailed infill drilling and well placement assessment process workflow for the re-development of a multi-layered heterogeneous reservoir.


2021 ◽  
Author(s):  
R. Gandham ◽  
Y. Zhang ◽  
K. Esler ◽  
V. Natoli

Sign in / Sign up

Export Citation Format

Share Document