Permanent Gauge Pressure and Rate Measurements for Reservoir Description and Well Monitoring: Field Cases

1998 ◽  
Vol 1 (03) ◽  
pp. 224-230 ◽  
Author(s):  
Trond Unneland ◽  
Yves Manin ◽  
Fikri Kuchuk

Summary This paper presents a procedure for interpreting data acquired with permanent downhole pressure sensors in association with surface or downhole rate measurements. The usefulness of this data source in reservoir description and well performance monitoring is illustrated. Unlike previously published examples, the interpretation is based on the analysis on a stream of data acquired over large periods of time, thus utilizing the continuous nature of the measurements. Three field cases are presented using the pressure and rate data in decline-curve analysis for wells with a variable downhole flowing pressure, and through more sophisticated models that are similar to the ones used in well test analysis. Because such interpretation is conducted while continuing production, it is particularly well suited for a well or group of wells under extended testing, which are equipped with downhole gauges and are flowing through surface separation and metering systems. Wells completed with both permanent downhole rate and pressure measurements are also ideal candidates for this type of analysis. Finally, the influence of the pressure sensor long term drift and the rate measurement error on the interpretation results and future forecasts are investigated. Introduction Since the first permanent downhole gauge installations in the early 1960's on land wells, the new technology in cable manufacturing, gauge sensor and electronics has permitted reliable installations also in hot, deep wells and subsea completions. These systems have gained acceptance among operators, and currently several hundred downhole gauges are installed every year. The traditional applications associated with permanent downhole systems can be characterized by four distinctions:single well optimization,reservoir description,safety improvement, andoperating cost reduction. Combining the recent technology development and these applications, the downhole gauge installations can be safe and reliable, as well as good investments. Most of the previous papers on the subject have focused on the hardware involved in permanent downhole pressure gauge installations. Regarding reservoir description, a few examples have been published where data recorded by the permanent downhole gauges have been used in well test transient analysis and multiwell interference tests. However, little has been published on the use of continuous downhole measurement in order to enhance reservoir description when associated with rate data during the pseudosteady state or depletion period of a field or a separate block. Decline curve analysis is one of the most widely used and documented methods for reserve estimation and production forecasting for a field under depletion. Solutions have been published for the case of a well producing at constant downhole flowing pressure. In reality, due to production constraints or change in operating procedures, the downhole flowing pressure seldom remains at a constant level over long periods of time. In the decline curve analysis literature, various methods have been proposed to account for these pressure variations; these include normalization and various types of superposition based on the pressure change observed at the wellhead.

2019 ◽  
Vol 44 (6) ◽  
pp. 6195-6204 ◽  
Author(s):  
Emeka Emmanuel Okoro ◽  
Austin Okoh ◽  
Evelyn Bose Ekeinde ◽  
Adewale Dosunmu

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Yueming Cheng ◽  
W. John Lee ◽  
Duane A. McVay

Decline curve analysis is the most commonly used technique to estimate reserves from historical production data for the evaluation of unconventional resources. Quantifying the uncertainty of reserve estimates is an important issue in decline curve analysis, particularly for unconventional resources since forecasting future performance is particularly difficult in the analysis of unconventional oil or gas wells. Probabilistic approaches are sometimes used to provide a distribution of reserve estimates with three confidence levels (P10, P50, and P90) and a corresponding 80% confidence interval to quantify uncertainties. Our investigation indicates that uncertainty is commonly underestimated in practice when using traditional statistical analyses. The challenge in probabilistic reserve estimation is not only how to appropriately characterize probabilistic properties of complex production data sets, but also how to determine and then improve the reliability of the uncertainty quantifications. In this paper, we present an advanced technique for the probabilistic quantification of reserve estimates using decline curve analysis. We examine the reliability of the uncertainty quantification of reserve estimates by analyzing actual oil and gas wells that have produced to near-abandonment conditions, and also show how uncertainty in reserve estimates changes with time as more data become available. We demonstrate that our method provides a more reliable probabilistic reserve estimation than other methods proposed in the literature. These results have important impacts on economic risk analysis and on reservoir management.


2015 ◽  
Vol 50 (1) ◽  
pp. 29-38 ◽  
Author(s):  
MS Shah ◽  
HMZ Hossain

Decline curve analysis of well no KTL-04 from the Kailashtila gas field in northeastern Bangladesh has been examined to identify their natural gas production optimization. KTL-04 is one of the major gas producing well of Kailashtila gas field which producing 16.00 mmscfd. Conventional gas production methods depend on enormous computational efforts since production systems from reservoir to a gathering point. The overall performance of a gas production system is determined by flow rate which is involved with system or wellbore components, reservoir pressure, separator pressure and wellhead pressure. Nodal analysis technique is used to performed gas production optimization of the overall performance of the production system. F.A.S.T. Virtu Well™ analysis suggested that declining reservoir pressure 3346.8, 3299.5, 3285.6 and 3269.3 psi(a) while signifying wellhead pressure with no changing of tubing diameter and skin factor thus daily gas production capacity is optimized to 19.637, 24.198, 25.469, and 26.922 mmscfd, respectively.Bangladesh J. Sci. Ind. Res. 50(1), 29-38, 2015


1989 ◽  
Author(s):  
L. Turki ◽  
J.A. Demski ◽  
A.S. Grader

Sign in / Sign up

Export Citation Format

Share Document