History Matching Geostatistical Reservoir Models with Gradual Deformation Method

Author(s):  
Y. Le Gallo ◽  
M. Le Ravalec-Dupin
Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. M33-M42
Author(s):  
Xiuwei Yang ◽  
Ningbo Mao ◽  
Peimin Zhu ◽  
Dan Xiao

Geostatistical seismic inversion can combine seismic data, well data, and spatial continuity of the property of interest to obtain high-resolution reservoir models and evaluate uncertainties. Some workflows estimate global geostatistical parameters, such as correlation length, and keep them fixed in all simulations and inversions. This can introduce biases due to the sparsity of available well data and underestimate the uncertainty of inversion. A better approach is to incorporate the uncertainty in these global parameters. Lateral correlation length is one of the most difficult parameters to estimate. We have developed a seismic inversion method based on local gradual deformation method, which incorporates the uncertainty of lateral correlation length and provides a two-level uncertainty evaluation. We first estimate a uniform prior distribution of lateral correlation length from well data and additional geologic expert knowledge. After using fast Fourier transform (FFT) moving average simulations and local gradual deformation optimization, we obtain multiple realizations from which we could extract the lateral correlation lengths and calculate their posterior distribution. The FFT moving average method generates reservoir models by a convolution between a filter operator and a random noise field. The filter operator does not change during inversion, and the correlation structure of the random noise field could be changed by the local gradual deformation method to match the seismic data. A synthetic model test shows that the correlation lengths and the global probability distribution of the inverted results tend to the true geostatistical characteristics. The posterior distribution of the lateral correlation length narrows after inversion. Compared with conventional geostatistical seismic inversion techniques, uncertainties in the results increase because we incorporate the uncertainty in the global parameters. A real case also demonstrated that by modifying the random noise field locally, thin layers in a thick formation are well restored, even if they are not interpreted in advance.


2005 ◽  
Author(s):  
Paul Thomas ◽  
Mickaele Le Ravalec-Dupin ◽  
Frederic Roggero

2021 ◽  
Author(s):  
Ali Al-Turki ◽  
Obai Alnajjar ◽  
Majdi Baddourah ◽  
Babatunde Moriwawon

Abstract The algorithms and workflows have been developed to couple efficient model parameterization with stochastic, global optimization using a Multi-Objective Genetic Algorithm (MOGA) for global history matching, and coupled with an advanced workflow for streamline sensitivity-based inversion for fine-tuning. During parameterization the low-rank subsets of most influencing reservoir parameters are identified and propagated to MOGA to perform the field-level history match. Data misfits between the field historical data and simulation data are calculated with multiple realizations of reservoir models that quantify and capture reservoir uncertainty. Each generation of the optimization algorithms reduces the data misfit relative to the previous iteration. This iterative process continues until a satisfactory field-level history match is reached or there are no further improvements. The fine-tuning process of well-connectivity calibration is then performed with a streamlined sensitivity-based inversion algorithm to locally update the model to reduce well-level mismatch. In this study, an application of the proposed algorithms and workflow is demonstrated for model calibration and history matching. The synthetic reservoir model used in this study is discretized into millions of grid cells with hundreds of producer and injector wells. It is designed to generate several decades of production and injection history to evaluate and demonstrate the workflow. In field-level history matching, reservoir rock properties (e.g., permeability, fault transmissibility, etc.) are parameterized to conduct the global match of pressure and production rates. Grid Connectivity Transform (GCT) was used and assessed to parameterize the reservoir properties. In addition, the convergence rate and history match quality of MOGA was assessed during the field (global) history matching. Also, the effectiveness of the streamline-based inversion was evaluated by quantifying the additional improvement in history matching quality per well. The developed parametrization and optimization algorithms and workflows revealed the unique features of each of the algorithms for model calibration and history matching. This integrated workflow has successfully defined and carried uncertainty throughout the history matching process. Following the successful field-level history match, the well-level history matching was conducted using streamline sensitivity-based inversion, which further improved the history match quality and conditioned the model to historical production and injection data. In general, the workflow results in enhanced history match quality in a shorter turnaround time. The geological realism of the model is retained for robust prediction and development planning.


2021 ◽  
Author(s):  
M. A. Borregales Reverón ◽  
H. H. Holm ◽  
O. Møyner ◽  
S. Krogstad ◽  
K.-A. Lie

Abstract The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) method has been popular for petroleum reservoir history matching. However, the increasing inclusion of automatic differentiation in reservoir models opens the possibility to history-match models using gradient-based optimization. Here, we discuss, study, and compare ES-MDA and a gradient-based optimization for history-matching waterflooding models. We apply these two methods to history match reduced GPSNet-type models. To study the methods, we use an implementation of ES-MDA and a gradient-based optimization in the open-source MATLAB Reservoir Simulation Toolbox (MRST), and compare the methods in terms of history-matching quality and computational efficiency. We show complementary advantages of both ES-MDA and gradient-based optimization. ES-MDA is suitable when an exact gradient is not available and provides a satisfactory forecast of future production that often envelops the reference history data. On the other hand, gradient-based optimization is efficient if the exact gradient is available, as it then requires a low number of model evaluations. If the exact gradient is not available, using an approximate gradient or ES-MDA are good alternatives and give equivalent results in terms of computational cost and quality predictions.


Sign in / Sign up

Export Citation Format

Share Document