The Use of Expandable Sand-Control Technology as a Step Change for Multiple-Zone SMART Well Completion - A Case Study

Author(s):  
Jan Saeby ◽  
Frank de Lange ◽  
Scott H. Aitken ◽  
Walter Aldaz
2019 ◽  
Author(s):  
Xuan Du ◽  
Haora Zheng ◽  
Xiaochun Wang ◽  
Xin Hua ◽  
Wenlong Guan ◽  
...  

Author(s):  
Huaiwen Li ◽  
Wei Liu ◽  
Lifei Shao ◽  
Xiaofang Wang ◽  
Chao Wang ◽  
...  

2021 ◽  
Author(s):  
P. R. Safiraldi

Objective/Scope: Challenges of sucker rod pumping operation in high gas and solid production;The implementation of integrated down-hole gas and solid separation in one device. Method procedure/processes: Old Rimau Fields in South Sumatera produce oil from sandstone reservoir with GOR above 800 scf/stb and solid production resulted from fracturing proppant flow back. Due to these conditions, some problems such as gas lock or interference, pump leakage, and rod parted were discovered which resulting in low SRP run life. The installation of sand screen and gas anchor has been implemented to encounter this issue. However, this initiative still ineffective due to limited conditions. If the sand screen was installed to control the sand, then the gas anchor to control the gas could not be installed and vice versa.Results, observations, conclusions: Integrated solid and gas handling called "hybrid" device has been introduced. The device is connected directly at the bottom of down-hole pump consist of three section, the upper section for intake and gas separator, the middle section for gas and solid separator, and lower one for solid container. The first utilization was conducted in three SRP wells, which are KG-09, LKP-21, and KG-10. Previously, these wells were shut-in due to down-hole problem. After installing the device while well service, the SRP run normally to produce the oil. The increasing of pump load performance was also obtained, indicated by the dyna card. At this time, the SRP is still running and run life is still under surveillance. This paper will explain the new technology end-to-end implementation of the integrated down-hole sand and gas control in one device for Sucker Rod Pump (SRP) system.


2021 ◽  
Vol 11 (22) ◽  
pp. 10744
Author(s):  
Changliang Han ◽  
Houqiang Yang ◽  
Nong Zhang ◽  
Rijian Deng ◽  
Yuxin Guo

The gob-side roadway in an isolated island working face is a typical representative of a strong mining roadway, which seriously restricts the efficient and safe production of underground coal mines. With the engineering background of the main transportation roadway 1513 (MTR 1513) of the Xinyi Coal Mine, this paper introduces the engineering case of gob-side roadway driving with small coal-pillar facing mining in an isolated island working face under the alternate mining of wide and narrow working faces. Through comprehensive research methods, we studied zoning disturbance deformation characteristics and stress evolution law of gob-side roadway driving under face mining. Based on the characteristics of zoning disturbance, MTR 1513 is divided into three zones, which are the heading face mining zone, the mining influenced zone, and the mining stability zone. A collaborative control technology using pressure relief and anchoring is proposed, and the differentiated control method is formed for the three zones. For the heading face mining zone, the control method of anchoring first and then pressure relief is adopted; for the mining influenced zone, the control idea of synchronous coordination of pressure relief and anchorage is adopted; for the mining stability zone, the control method of anchoring without pressure relief is adopted. Engineering practices show that the disturbance influence distance of working face 1511 on MTR 1513 changes from 110 m advanced to 175 m delay. At this time, the surrounding rock deformation is effectively controlled, which verified the rationality of the division and the feasibility of three zoning control technology. The research results can provide reference for gob-side roadway driving with small coal pillar facing mining in a special isolated island working face.


Sign in / Sign up

Export Citation Format

Share Document