sucker rod pump
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 79)

H-INDEX

5
(FIVE YEARS 3)

Author(s):  
I. Sh. Mingulov ◽  
◽  
M. D. Valeev ◽  
V. V. Mukhametshin ◽  
L. S. Kuleshova ◽  
...  

The article is devoted to the diagnostics of the well pumping equipment operation using wells production viscosity measurement results obtained by the developed field device VNP 1-4, 0-90. The method for making measurements with a field oil viscometer was developed in accordance with the provisions of GOST R 8.563, GOST R ISO 5725-2. It has gained certification and entered the State Register of the Russian Federation. On the basis of preliminary laboratory studies of oils viscosity from the group of fields of LLC UK «Sheshmaoil», a formula was obtained for the dependence of oil emulsions viscosity on temperature and the content of formation water in them. Viscosity measurements obtained with the developed device in field conditions have shown the applicability of the method for calculating the watered oil viscosity.The application of the results of measuring the watered oil viscosity at the wellhead allows diagnosing the downhole sucker rod pump unit operation based on the construction of a dynamic model of its operation. Keywords: equipment diagnostics; water cut; temperature; fluid viscosity; dynamic model; sucker rod pump.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 83
Author(s):  
Oleg Bazaluk ◽  
Olha Dubei ◽  
Liubomyr Ropyak ◽  
Maksym Shovkoplias ◽  
Tetiana Pryhorovska ◽  
...  

During oil fields operation, gas is extracted along with oil. In this article it is suggested to use jet pumps for utilization of the associated oil gas, burning of which causes environmental degradation and poses a potential threat to the human body. In order to determine the possibility of simultaneous application of a sucker-rod pump, which is driven by a rocking machine, and a jet pump (ejector) in the oil well, it is necessary to estimate the distribution of pressure along the borehole from the bottomhole to the mouth for two cases: when the well is operated only be the sucker-rod pump and while additional installation of the oil-gas jet pump above its dynamic level. For this purpose, commonly known methods of Poettman-Carpenter and Baksendel were used. In addition, the equations of high-pressure and low-pressure oil-gas jet pumps were obtained for the case, when the working stream of the jet pump is a gas-oil production mixture and the injected stream is a gas from the annulus of the well. The values which are included in the resulting equations are interrelated and can only be found in a certain sequence. Therefore, a special methodology has been developed for the practical usage of these equations in order to calculate the working parameters of a jet pump based on the given independent working parameters of the oil well. Using this methodology, which was implemented in computer programs, many operating parameters were calculated both for the well and for the jet pump itself (pressures, densities of working, injected and mixed flows, flow velocities and other parameters in control sections). According to the results of calculations, graphs were built that indicate a number of regularities during the oil well operation with such a jet pump. The main result of the performed research is a recommendation list on the choice of the oil-gas jet pump location inside the selected oil well and generalization of the principles for choosing the perfect location of such ejectors for other wells. The novelty of the proposed study lays in a systematic approach to rod pump and our patented ejector pump operation in the oil and chrome plating of pump parts. The result of scientific research is a sound method of determining the rational location of the ejector in the oil well and the calculation of its geometry, which will provide a complete selection of petroleum gas released into the annulus of the oil well. To ensure reliable operation of jet and plunger pumps in oil wells, it is proposed to use reinforcement of parts (bushings, plungers, rods, etc.) by electrochemical chromium plating in a flowing electrolyte. This has significantly increased the wear resistance and corrosion resistance of the operational surfaces of these parts and, accordingly, the service life of the pumps. Such measures will contribute to oil production intensification from wells and improve the environmental condition of oil fields.


2021 ◽  
Author(s):  
Yuzar Aryadi ◽  
Azis Hidayat ◽  
Hilman Lazuardi ◽  
Syahroni Isnanto ◽  
Bonni Ariwibowo ◽  
...  

Abstract SCADA optimization platform is implemented to monitor and evaluate well performance. For Sucker Rod Pump, SCADA Optimization Software can be used to monitor the unit balance and gearbox torque. In some ways, not all required well configuration data for SCADA Optimization Software to do a calculation of counterbalance torque (CBT) for pumping unit balance and gearbox torque evaluation are available. Standard field Counterbalance Effect (CBE) measurement might be performed to calculate the CBT value. However, this standard procedure is limited to well that run on balance condition. For well with unbalance condition, the measured CBE needs to be adjusted by a correction factor which the equation will be presented in this paper. The corrected CBE value from the new equation is then inputted to the SCADA Optimization software to perform day-to-day real-time monitoring of pumping unit balance and gearbox torque. Derivation of the CBE correction factor equation is presented. Validation upon this new equation is performed by comparing the result with electrical measurement on the pumping unit motor. Using the calculated CBT from the new equation, SCADA Optimization Software performs gearbox torque and pumping unit balance analysis based on every collected dynamometer card. Calculated CBT from the new equation provided results in gearbox torque distribution pattern that match with measured electrical parameter distribution along the stroke. This CBT value assists SCADA optimization software to calculate pumping unit balance and gearbox torque. Alarm in the SCADA optimization software that coming from an anomaly on pumping unit balance and gearbox torque help operator to do preventive maintenance so that pumping unit component especially the gearbox could have longer run life.


2021 ◽  
Author(s):  
Ian Nickell ◽  
Terry Treiberg

Abstract For decades sucker rod pump artificially lifted wells have used devices called pump off controllers (POC) to match the pumping unit's runtime to the available reservoir production by idling the well for a set time where variable frequencies drives are not available. In doing this the POC allows the well to enter a set period of downtime when the downhole pump fillage is incomplete to avoid premature failures, and then brings the well back online to operate before production is lost. Although this method has been successful for several years, autonomous control algorithms can be utilized to reduce failures or increase production in cases where the downtime is not already optimized. Optimizing the idle time for a sucker rod pump artificially lifted well involves understanding the amount of time required to fill the near wellbore storage area before generating a fluid column above the pump intake that will begin to hinder inflow from the reservoir into the wellbore. By varying the idle time and observing the impact on production and cycles the program hunts for the optimal idle time. By constantly hunting for the optimal idle time the optimization process can adjust the idle time when operating conditions change. This gives the advantage of always meeting the current well bore and reservoir conditions without having to have a user make these changes and determine what the downtime for the well is. Autonomously modulating the idle time for a well, if done properly will either reduces incomplete fillage pump strokes, in cases where the idle time is too short, or will increase the wells production in cases where the idle time is too long. Overall this will result in the optimization of wells by reducing failures and/or increasing production, generating a huge value to the end user by automating the entire process of downtime optimization.


2021 ◽  
Author(s):  
P. R. Safiraldi

Objective/Scope: Challenges of sucker rod pumping operation in high gas and solid production;The implementation of integrated down-hole gas and solid separation in one device. Method procedure/processes: Old Rimau Fields in South Sumatera produce oil from sandstone reservoir with GOR above 800 scf/stb and solid production resulted from fracturing proppant flow back. Due to these conditions, some problems such as gas lock or interference, pump leakage, and rod parted were discovered which resulting in low SRP run life. The installation of sand screen and gas anchor has been implemented to encounter this issue. However, this initiative still ineffective due to limited conditions. If the sand screen was installed to control the sand, then the gas anchor to control the gas could not be installed and vice versa.Results, observations, conclusions: Integrated solid and gas handling called "hybrid" device has been introduced. The device is connected directly at the bottom of down-hole pump consist of three section, the upper section for intake and gas separator, the middle section for gas and solid separator, and lower one for solid container. The first utilization was conducted in three SRP wells, which are KG-09, LKP-21, and KG-10. Previously, these wells were shut-in due to down-hole problem. After installing the device while well service, the SRP run normally to produce the oil. The increasing of pump load performance was also obtained, indicated by the dyna card. At this time, the SRP is still running and run life is still under surveillance. This paper will explain the new technology end-to-end implementation of the integrated down-hole sand and gas control in one device for Sucker Rod Pump (SRP) system.


Author(s):  
Xiao-Xiao Lv ◽  
Han-Xiang Wang ◽  
Zhang Xin ◽  
Yan-Xin Liu ◽  
Peng-Cheng Zhao

Author(s):  
Sherif Fakher ◽  
Abdelaziz Khlaifat ◽  
M. Enamul Hossain ◽  
Hashim Nameer

AbstractIn many oil reservoirs worldwide, the downhole pressure does not have the ability to lift the produced fluids to the surface. In order to produce these fluids, pumps are used to artificially lift the fluids; this method is referred to as artificial lift. More than seventy percent of all currently producing oil wells are being produced by artificial lift methods. One of the most applied artificial lift methods is sucker rod pump. Sucker rod pumps are considered a well-established technology in the oil and gas industry and thus are easy to apply, very common worldwide, and low in capital and operational costs. Many advancements in technology have been applied to improve sucker rod pumps performance, applicability range, and diagnostics. With these advancements, it is important to be able to constantly provide an updated review and guide to the utilization of the sucker rod pumps. This research provides an updated comprehensive review of sucker rod pumps components, diagnostics methods, mathematical models, and common failures experienced in the field and how to prevent and mitigate these failures. Based on the review conducted, a new classification of all the methods that can fall under the sucker rod pump technology based on newly introduced sucker rod pump methods in the industry has been introduced. Several field cases studies from wells worldwide are also discussed in this research to highlight some of the main features of sucker rod pumps. Finally, the advantages and limitations of sucker rod pumps are mentioned based on the updated review. The findings of this study can help increase the understanding of the different sucker rod pumps and provide a holistic view of the beam rod pump and its properties and modeling.


2021 ◽  
pp. 23-27
Author(s):  
I.Z. Ahmadov ◽  
◽  
S.E. Tagiyeva ◽  
◽  
◽  
...  

As it is known, currently, the fields at the last stage of development are operated predominantly with sucker-rod pumps. Their operation is usually carried out in quite complicated technological and hydrodynamic conditions dramatically affecting the operation efficiency. Based on the actual field data, the paper studies the possible impact of the depth of sucker-rod pump running on the delivery rate, which is one of the indexes of operation of the whole sucker-rod pump unit. The values of delivery rates by oil and water have been calculated and their functional dependencies on the depth of sucker-rod pumps running developed as well. The results justified the increase of delivery rate by oil and its decrease by water in reviewed value diapasons. Mathematical models of developed dependencies have been obtained as well. As a result of conducted studies, the practicability of the increase of pump setting depth in operation conditions of reviewed field is justified.


Sign in / Sign up

Export Citation Format

Share Document