An Integrated Approach to Interval Pressure Transient Test Analysis Using Analytical and Numerical Methods

Author(s):  
R.R. Jackson ◽  
R. Banerjee ◽  
R.K.M. Thambynayagam
2021 ◽  
Author(s):  
David Craig ◽  
Thomas Blasingame

Abstract All transient test interpretation methods rely on or utilize diagnostic plots for the identification of wellbore or fracture storage distortion, flow regimes, and other parameters (e.g., minimum horizontal stress). Although all "test" interpretations of interest are transient test data (i.e., those involving an "event"), the associated diagnostic plots are not interchangeable between such tests. The objective of this work is to clearly define the appropriate diagnostic plot(s) for each type of transient test. The work applies the appropriate transient test theory to demonstrate the applicability of each diagnostic plot along with clearly defining the characteristic features that make a given plot "diagnostic." For pressure transient testing, the material is largely a review, but for rate transient tests and diagnostic fracture-injection/falloff tests, new ideas are introduced and documented to justify appropriate diagnostic plots. Data examples are provided for illustration and application. In general, pressure transient test diagnostic plots are not misused, but the same cannot be said for diagnostic fracture-injection/falloff tests (or DFITs) where it is common to ascribe flow regimes and/or draw other erroneous conclusions based on observations from an inappropriately constructed or interpretated diagnostic plot. The examples provided illustrate both the correct diagnostic plot and interpretations, but also illustrate how data can be easily misinterpreted in common practice.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Jia Zhichun ◽  
Li Daolun ◽  
Yang Jinghai ◽  
Xue Zhenggang ◽  
Lu Detang

Well test analysis for polymer flooding is different from traditional well test analysis because of the non-Newtonian properties of underground flow and other mechanisms involved in polymer flooding. Few of the present works have proposed a numerical approach of pressure transient analysis which fully considers the non-Newtonian effect of real polymer solution and interprets the polymer rheology from details of pressure transient response. In this study, a two-phase four-component fully implicit numerical model incorporating shear thinning effect for polymer flooding based on PEBI (Perpendicular Bisection) grid is developed to study transient pressure responses in polymer flooding reservoirs. Parametric studies are conducted to quantify the effect of shear thinning and polymer concentration on the pressure transient response. Results show that shear thinning effect leads to obvious and characteristic nonsmoothness on pressure derivative curves, and the oscillation amplitude of the shear-thinning-induced nonsmoothness is related to the viscosity change decided by shear thinning effect and polymer concentration. Practical applications are carried out with shut-in data obtained in Daqing oil field, which validates our findings. The proposed method and the findings in this paper show significant importance for well test analysis for polymer flooding and the determination of the polymer in situ rheology.


2012 ◽  
Author(s):  
Prasanna Kumar Tellapaneni ◽  
Sourabh Shukla ◽  
Richard Robert Jackson ◽  
James Dunlap ◽  
Harshad Dixit

2014 ◽  
Author(s):  
Davoud Bardal ◽  
Melanie Sabrina Trim ◽  
Reynaldo Tapia ◽  
Jose Abraham Arias-Correa ◽  
Sasha M. Baptista-Parra

Sign in / Sign up

Export Citation Format

Share Document