Feeling the Pulse of Drill Cuttings Injection Wells - A Case Study of Simulation, Monitoring and Verification in Alaska

SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 458-467 ◽  
Author(s):  
Quanxin Guo ◽  
Ahmed S. Abou-Sayed ◽  
Harold Robert Engel

Summary In April 1998, a program for continuous deep disposal of drill cuttings and open pit materials was initiated on the North Slope of Alaska. This ongoing injection project is commonly referred to as GNI, or "Grind and Inject." Accumulated drilling cuttings and mud slurry are injected into a receptive Cretaceous soft sandstone in three wells: GNI-1, GNI-2, and GNI-3. Typical operations involve injecting slurry into one of the three wells continuously for a number of days and then switching injection to another well. The average injection rate is approximately 30,000 B/D. As of 30 September 2002, project injection has included 12.7×106 bbl of water, 30.9×106 bbl of slurry containing 2.0×106 tons or 2.2×106 cubic yards of excavated frozen reserve pit material and drilling solids, and 1.31×106 bbl of fluid from ongoing drilling operations. Knowledge of the fate of the drilling and open-pit materials during injection is paramount to assure the safe containment of the disposed materials without harm to the environment. Numerical modeling, well testing (including step-rate and pressure-falloff testing), and logging surveys were performed periodically to assess the operational integrity of the disposal wells and to ensure the safe containment of the disposed waste slurry. The high-volume capacity of these injectors highlighted the mechanisms for slurry being accepted by multiple and branched fractures—part of the slurry went to previous fractures during subsequent batch injections. This paper will detail how to integrate numerical simulations, well testing/monitoring, and operational data to estimate storage capacity and construct a clear representation of what was happening underground during this GNI operation. The work has implications on other large drilling-waste injection projects worldwide. Introduction Early drill sites on the North Slope of Alaska were designed with reserve pits for surface storage of mud and cuttings from drilling operations. In 1993, the operator at the time agreed to remove the mud and cuttings from all reserve pits. Additionally, the practice of storing drilling mud and cuttings in surface reserve pits was discontinued. These waste streams are now managed as they are generated by way of injection, thus eliminating the need for surface reserve pits. The estimated total volume of reserve pit mud and cuttings to be managed by this process is over 5 million cubic yards (not including drilling mud and cuttings generated from ongoing drilling operations). After reviewing disposal options, slurry injection was selected as the preferred disposal technique to remediate the reserve pits. While drill cuttings injection projects have been operated worldwide since the early 1990s (Abou-Sayed et al. 1989; Malachosky et al. 1991; Sirevag and Bale 1993; Moschovidis et al. 1993). They were generally small in volume. Feasibility evaluation of large scale injection of oily waste injection in Alaska started in the late 1980s (Abou-Sayed et al. 1989). This field evaluation test also included a step-rate test, in-situ stress measurements, tiltmeter monitoring of ground surface deflections, and a wellbore hydraulic impedance test (Abou-Sayed et al. 1989). Approximately 2 million bbl of slurry, containing crude oil, unused frac sand, drilling muds, unset cement, and other elements, had been injected intermittently into this well at the time of the analysis. The injection rate varied from 500 to 4,000 B/D.

1983 ◽  
Vol 105 (1) ◽  
pp. 26-29 ◽  
Author(s):  
R. G. Finucane ◽  
R. L. Scher

During the winter of 1980–81, Exxon built about 16 km of floating ice roads in the Beaufort Sea off the north slope of Alaska. These roads were used to haul gravel and other materials for the construction of four offshore drillsites and to provide logistical support to subsequent exploration drilling operations. Ice roads over tundra and grounded lake or sea ice have been used for many years in the Arctic. Over the past three years, exploration activities have progressed offshore to water depths where the sea ice is floating. This paper summarizes the procedures, equipment, and production rates achieved during the construction of our 1980–81 winter floating ice roads. Also presented are the results of performance tests on some of the various auger pumping systems presently available.


2010 ◽  
Author(s):  
Jon Greggory Sarber ◽  
Charles Reynolds ◽  
Charles Michael Michel ◽  
Kelly Haag ◽  
Richard A. Morris

Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 346-358 ◽  
Author(s):  
Greg Beresford‐Smith ◽  
Rolf N. Rango

Strongly dispersive noise from surface waves can be attenuated on seismic records by Flexfil, a new prestack process which uses wavelet spreading rather than velocity as the criterion for noise discrimination. The process comprises three steps: trace‐by‐trace compression to collapse the noise to a narrow fan in time‐offset (t-x) space; muting of the noise in this narrow fan; and inverse compression to recompress the reflection signals. The process will work on spatially undersampled data. The compression is accomplished by a frequency‐domain, linear operator which is independent of trace offset. This operator is the basis of a robust method of dispersion estimation. A flexural ice wave occurs on data recorded on floating ice in the near offshore of the North Slope of Alaska. It is both highly dispersed and of broad frequency bandwidth. Application of Flexfil to these data can increase the signal‐to‐noise ratio up to 20 dB. A noise analysis obtained from a microspread record is ideal to use for dispersion estimation. Production seismic records can also be used for dispersion estimation, with less accurate results. The method applied to field data examples from Alaska demonstrates significant improvement in data quality, especially in the shallow section.


2012 ◽  
Vol 25 (23) ◽  
pp. 8238-8258 ◽  
Author(s):  
Johannes Mülmenstädt ◽  
Dan Lubin ◽  
Lynn M. Russell ◽  
Andrew M. Vogelmann

Abstract Long time series of Arctic atmospheric measurements are assembled into meteorological categories that can serve as test cases for climate model evaluation. The meteorological categories are established by applying an objective k-means clustering algorithm to 11 years of standard surface-meteorological observations collected from 1 January 2000 to 31 December 2010 at the North Slope of Alaska (NSA) site of the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM). Four meteorological categories emerge. These meteorological categories constitute the first classification by meteorological regime of a long time series of Arctic meteorological conditions. The synoptic-scale patterns associated with each category, which include well-known synoptic features such as the Aleutian low and Beaufort Sea high, are used to explain the conditions at the NSA site. Cloud properties, which are not used as inputs to the k-means clustering, are found to differ significantly between the regimes and are also well explained by the synoptic-scale influences in each regime. Since the data available at the ARM NSA site include a wealth of cloud observations, this classification is well suited for model–observation comparison studies. Each category comprises an ensemble of test cases covering a representative range in variables describing atmospheric structure, moisture content, and cloud properties. This classification is offered as a complement to standard case-study evaluation of climate model parameterizations, in which models are compared against limited realizations of the Earth–atmosphere system (e.g., from detailed aircraft measurements).


2021 ◽  
Author(s):  
Antoni Miszewski ◽  
Adam Miszewski ◽  
Richard Stevens ◽  
Matteo Gemignani

Abstract A set of 5 wells were to be drilled with directional Coiled Tubing Drilling (CTD) on the North Slope of Alaska. The particular challenges of these wells were the fact that the desired laterals were targeted to be at least 6000ft long, at a shallow depth. Almost twice the length of laterals that are regularly drilled at deeper depths. The shallow depth meant that 2 of the 5 wells involved a casing exit through 3 casings which had never been attempted before. After drilling, the wells were completed with a slotted liner, run on coiled tubing. This required a very smooth and straight wellbore so that the liner could be run as far as the lateral had been drilled. Various methods were considered to increase lateral reach, including, running an extended reach tool, using friction reducer, increasing the coiled tubing size and using a drilling Bottom Hole Assembly (BHA) that could drill a very straight well path. All of these options were modelled with tubing forces software, and their relative effectiveness was evaluated. The drilling field results easily exceeded the minimum requirements for success. This project demonstrated record breaking lateral lengths, a record length of liner run on coiled tubing in a single run, and a triple casing exit. The data gained from this project can be used to fine-tune the modelling for future work of a similar nature.


2018 ◽  
Vol 219 ◽  
pp. 221-232 ◽  
Author(s):  
Rocio R. Duchesne ◽  
Mark J. Chopping ◽  
Ken D. Tape ◽  
Zhuosen Wang ◽  
Crystal L.B. Schaaf

2021 ◽  
Vol 21 (5) ◽  
pp. 4149-4167
Author(s):  
Joseph Sedlar ◽  
Adele Igel ◽  
Hagen Telg

Abstract. Clear-sky periods across the high latitudes have profound impacts on the surface energy budget and lower atmospheric stratification; however an understanding of the atmospheric processes leading to low-level cloud dissipation and formation events is limited. A method to identify clear periods at Utqiaġvik (formerly Barrow), Alaska, during a 5-year period (2014–2018) is developed. A suite of remote sensing and in situ measurements from the high-latitude observatory are analyzed; we focus on comparing and contrasting atmospheric properties during low-level (below 2 km) cloud dissipation and formation events to understand the processes controlling clear-sky periods. Vertical profiles of lidar backscatter suggest that aerosol presence across the lower atmosphere is relatively invariant during the periods bookending clear conditions, which suggests that a sparsity of aerosol is not frequently a cause for cloud dissipation on the North Slope of Alaska. Further, meteorological analysis indicates two active processes ongoing that appear to support the formation of low clouds after a clear-sky period: namely, horizontal advection, which was dominant in winter and early spring, and quiescent air mass modification, which was dominant in the summer. During summer, the dominant mode of cloud formation is a low cloud or fog layer developing near the surface. This low cloud formation is driven largely by air mass modification under relatively quiescent synoptic conditions. Near-surface aerosol particles concentrations changed by a factor of 2 around summer formation events. Thermodynamic adjustment and increased aerosol presence under quiescent atmospheric conditions are hypothesized as important mechanisms for fog formation.


Sign in / Sign up

Export Citation Format

Share Document