Integration of Artificial Intelligence and Lean Sigma for Large Field Production Optimization: Application to Kern River Field

Author(s):  
Andrei Popa ◽  
Raul Ramos ◽  
Andrew B. Cover ◽  
Carrie Goddard Popa
2021 ◽  
Author(s):  
Roberto Carlos Fuenmayor

Abstract The concept of digital transformation is based on two principles: data driven—exploiting every bit of data source—and user focused. The objective is not only to consolidate data from multiple systems, but to apply an analytics approach to extract insights that are the product of the aggregation of multiple sources then present it to the user (field manager, production and surveillance engineer, region manager, and country) with criteria's of simplicity, specificity, novelty—and most importantly, clarity. The idea is to liberate the data across the whole upstream community and intended for production operations people by providing a one-stop production digital platform that taps into unstructured data and is transformed into structured to be used as input to engineering models and as a result provide data analytics and generate insights. There is three main key objectives: To have only one source of truth using cloud-based technology To incorporate artificial intelligence models to fill the data gaps of production and operations parameters such as pressure and temperature To incorporate multiple solutions for the upstream community that helps during the slow, medium, and fast loops of upstream operations. The new "way of working" helps multiple disciplines such as subsurface team, facilities, and operations, HSSE and business planning, combining business process management and technical workflows to generates insights and create value that impact the profit and losses (P&L) sheet of the operators. The "new ways of working" tackle values pillars such as production optimization, reduced unplanned deferment, cost avoidance, and improved process cycle efficiency. The use of big data and artificial intelligence algorithms are key to understand the production of the wells and fields, as well as anchoring on processing the data with automated engineering models, thus enabling better decision making including the span of time scale such as fast, medium, or slow loop actions.


2021 ◽  
Author(s):  
Edwin Lawrence ◽  
Marie Bjoerdal Loevereide ◽  
Sanggeetha Kalidas ◽  
Ngoc Le Le ◽  
Sarjono Tasi Antoneus ◽  
...  

Abstract As part of the production optimization exercise in J field, an initiative has been taken to enhance the field production target without well intervention. J field is a mature field; the wells are mostly gas lifted, and currently it is in production decline mode. As part of this optimization exercise, a network model with multiple platforms was updated with the surface systems (separator, compressors, pumps, FPSO) and pipelines in place to understand the actual pressure drop across the system. Modelling and calibration of the well and network model was done for the entire field, and the calibrated model was used for the production optimization exercise. A representative model updated with the current operating conditions is the key for the field production and asset management. In this exercise, a multiphase flow simulator for wells and pipelines has been utilized. A total of ∼50 wells (inclusive of idle wells) has been included in the network model. Basically, the exercise started by updating the single-well model using latest well test data. During the calibration at well level, several steps were taken, such as evaluation of historical production, reservoir pressure, and well intervention. This will provide a better idea on the fine-tuning parameters. Upon completion of calibrating well models, the next level was calibration of network model at the platform level by matching against the platform operating conditions (platform production rates, separator/pipeline pressure). The last stage was performing field network model calibration to match the overall field performance. During the platform stage calibration, some parameters such as pipeline ID, horizontal flow correlation, friction factor, and holdup factor were fine-tuned to match the platform level operating conditions. Most of the wells in J field have been calibrated by meeting the success criterion, which is within +/-5% for the production rates. However, there were some challenges in matching several wells due to well test data validity especially wells located on remote platform where there is no dedicated test separator as well as the impact of gas breakthrough, which may interfere to performance of wells. These wells were decided to be retested in the following month. As for the platform level matching, five platforms were matched within +/-10% against the reported production rates. During the evaluation, it was observed there were some uncertainties in the reported water and gas rates (platform level vs. well test data). This is something that can be looked into for a better measurement in the future. By this observation, it was suggested to select Platform 1 with the most reliable test data as well as the platform rate for the optimization process and qualifying for the field trial. Nevertheless, with the representative network model, two scenarios, reducing separator pressure at platform level and gas lift optimization by an optimal gas lift rate allocation, were performed. The model predicts that a separator pressure reduction of 30 psi in Platform 1 has a potential gain of ∼300 BOPD, which is aligned with the field results. Apart from that, there was also a potential savings in gas by utilizing the predicted allocated gas lift injection rate.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
waleed osman ◽  
Waleed Abdelraoof ◽  
Tharwat Abdelfattah ◽  
Maher Mesbah

2021 ◽  
Author(s):  
Abdulmalik Ibragimov ◽  
Andrey Kan

Abstract Field production constrained with surface facilities on gas handling have to deal with well rates optimization by reducing gas oil ratio of the field production. This means the best way of reducing gas oil ratio on field level is not by closing wells with the highest gas oil ratio but chocking back wells where gas breakthrough occurred and GOR of a well is rate dependent [1]. In this paper, authors modeled and analyzed wells with gas breakthrough in single porosity and dual porosity sector models. The analysis showed single porosity models underestimate severity of gas breakthrough and fail to predict rate dependent GOR of a well in the field. Also, based on the sector model using machine-learning technique an empirical equation was developed to estimate rate dependent GOR of a well which can be further used in field level production optimization exercise to reach maximum liquid production under gas processing constraints.


2021 ◽  
Author(s):  
Yanhui Zhang ◽  
Ibrahim Hoteit ◽  
Klemens Katterbauer ◽  
Alberto Marsala

Abstract Saturation mapping in fractured carbonate reservoirs is a major challenge for oil and gas companies. The fracture channels within the reservoir are the primary water conductors that shape water front patterns and cause uneven sweep efficiency. Flow simulation for fractured reservoirs is typically time-consuming due to the inherent high nonlinearity. A data-driven approach to capture the main flow patterns is quintessential for efficient optimization of reservoir performance and uncertainty quantification. We employ an artificial intelligence (AI) aided proxy modeling framework for waterfront tracking in complex fractured carbonate reservoirs. The framework utilizes deep neural networks and reduced-order modeling to achieve an efficient representation of the reservoir dynamics to track and determine the fluid flow patterns within the fracture network. The AI-proxy model is examined on a synthetic two-dimensional (2D) fractured carbonate reservoir model. Training dataset including saturation and pressure maps at a series of time steps is generated using a dual-porosity dual-permeability (DPDP) model. Experimental results indicate a robust performance of the AI-aided proxy model, which successfully reproduce the key flow patterns within the reservoir and achieve orders of shorter running time than the full-order reservoir simulation. This suggests the great potential of utilizing the AI-aided proxy model for heavy-simulation-based reservoir applications such as history matching, production optimization, and uncertainty assessment.


Sign in / Sign up

Export Citation Format

Share Document