scholarly journals Artificial Intelligence Aided Proxy Model for Water Front Tracking in Fractured Carbonate Reservoirs

2021 ◽  
Author(s):  
Yanhui Zhang ◽  
Ibrahim Hoteit ◽  
Klemens Katterbauer ◽  
Alberto Marsala

Abstract Saturation mapping in fractured carbonate reservoirs is a major challenge for oil and gas companies. The fracture channels within the reservoir are the primary water conductors that shape water front patterns and cause uneven sweep efficiency. Flow simulation for fractured reservoirs is typically time-consuming due to the inherent high nonlinearity. A data-driven approach to capture the main flow patterns is quintessential for efficient optimization of reservoir performance and uncertainty quantification. We employ an artificial intelligence (AI) aided proxy modeling framework for waterfront tracking in complex fractured carbonate reservoirs. The framework utilizes deep neural networks and reduced-order modeling to achieve an efficient representation of the reservoir dynamics to track and determine the fluid flow patterns within the fracture network. The AI-proxy model is examined on a synthetic two-dimensional (2D) fractured carbonate reservoir model. Training dataset including saturation and pressure maps at a series of time steps is generated using a dual-porosity dual-permeability (DPDP) model. Experimental results indicate a robust performance of the AI-aided proxy model, which successfully reproduce the key flow patterns within the reservoir and achieve orders of shorter running time than the full-order reservoir simulation. This suggests the great potential of utilizing the AI-aided proxy model for heavy-simulation-based reservoir applications such as history matching, production optimization, and uncertainty assessment.

2021 ◽  
pp. 014459872199465
Author(s):  
Yuhui Zhou ◽  
Sheng Lei ◽  
Xuebiao Du ◽  
Shichang Ju ◽  
Wei Li

Carbonate reservoirs are highly heterogeneous. During waterflooding stage, the channeling phenomenon of displacing fluid in high-permeability layers easily leads to early water breakthrough and high water-cut with low recovery rate. To quantitatively characterize the inter-well connectivity parameters (including conductivity and connected volume), we developed an inter-well connectivity model based on the principle of inter-well connectivity and the geological data and development performance of carbonate reservoirs. Thus, the planar water injection allocation factors and water injection utilization rate of different layers can be obtained. In addition, when the proposed model is integrated with automatic history matching method and production optimization algorithm, the real-time oil and water production can be optimized and predicted. Field application demonstrates that adjusting injection parameters based on the model outputs results in a 1.5% increase in annual oil production, which offers significant guidance for the efficient development of similar oil reservoirs. In this study, the connectivity method was applied to multi-layer real reservoirs for the first time, and the injection and production volume of injection-production wells were repeatedly updated based on multiple iterations of water injection efficiency. The correctness of the method was verified by conceptual calculations and then applied to real reservoirs. So that the oil field can increase production in a short time, and has good application value.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Yang Yang ◽  
Huiqing Liu ◽  
Jing Wang ◽  
Zhaoxiang Zhang ◽  
Qingyuan Chen ◽  
...  

The Tahe reservoir, one of the largest scale carbonate reservoirs in western China, has very special cavities and fractures. The size of the cavities ranges from millimeter to meter scale, and the size of the fractures ranges from hundreds micrometers to millimeters scale. The length of some cavities can even reach kilometers. However, based on views of core testing results, there is insignificant flow in the rock matrix. This paper introduces a new and refined method to determine flow units in such Karst carbonate reservoirs. Based on fractal theory, fluid flow patterns can be divided into three types by using production data of the Tahe reservoir. Through porosity and permeability statistics of production layers on the established geological model, flow boundaries of different flow patterns were proposed. Flow units were classified in terms of the flow boundaries. As for refined flow units, subcategory flow units were determined by three graphical tools: the limit of dynamic synthesis coefficient (DSCL) method, modified flow coefficient (MS1 and MS2, which are derived by the Forchheimer equation) curve, and the stratigraphic modified Lorenz plot (SMLP). All the parameters of graphical tools help to reconcile geology to fluid flow by illustrating the important link between geology, petrophysics, and reservoir engineering. The use of this technique is illustrated with data from a specific block of the Tahe reservoir.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3699 ◽  
Author(s):  
Faisal Awad Aljuboori ◽  
Jang Hyun Lee ◽  
Khaled A. Elraies ◽  
Karl D. Stephen

Gravity drainage is one of the essential recovery mechanisms in naturally fractured reservoirs. Several mathematical formulas have been proposed to simulate the drainage process using the dual-porosity model. Nevertheless, they were varied in their abilities to capture the real saturation profiles and recovery speed in the reservoir. Therefore, understanding each mathematical model can help in deciding the best gravity model that suits each reservoir case. Real field data from a naturally fractured carbonate reservoir from the Middle East have used to examine the performance of various gravity equations. The reservoir represents a gas–oil system and has four decades of production history, which provided the required mean to evaluate the performance of each gravity model. The simulation outcomes demonstrated remarkable differences in the oil and gas saturation profile and in the oil recovery speed from the matrix blocks, which attributed to a different definition of the flow potential in the vertical direction. Moreover, a sensitivity study showed that some matrix parameters such as block height and vertical permeability exhibited a different behavior and effectiveness in each gravity model, which highlighted the associated uncertainty to the possible range that often used in the simulation. These parameters should be modelled accurately to avoid overestimation of the oil recovery from the matrix blocks, recovery speed, and to capture the advanced gas front in the oil zone.


SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 26-34 ◽  
Author(s):  
Yongfu Wu ◽  
Patrick J. Shuler ◽  
Mario Blanco ◽  
Yongchun Tang ◽  
William A. Goddard

Summary This study focuses on the mechanisms responsible for enhanced oil recovery (EOR) from fractured carbonate reservoirs by surfactant solutions, and methods to screen for effective chemical formulations quickly. One key to this EOR process is the surfactant solution reversing the wettability of the carbonate surfaces from less water-wet to more water-wet conditions. This effect allows the aqueous phase to imbibe into the matrix spontaneously and expel oil bypassed by a waterflood. This study used different naphthenic acids (NA) dissolved in decane as a model oil to render calcite surfaces less water-wet. Because pure compounds are used, trends in wetting behavior can be related to NA molecular structure as measured by solid adsorption; contact angle; and a novel, simple flotation test with calcite powder. Experiments with different surfactants and NA-treated calcite powder provide information about mechanisms responsible for sought-after reversal to a more water-wet state. Results indicate this flotation test is a useful rapid screening tool to identify better EOR surfactants for carbonates. The study considers the application of surfactants for EOR from carbonate reservoirs. This technology provides a new opportunity for EOR, especially for fractured carbonate, where waterflood response typically is poor and the matrix is a high oil-saturation target. Introduction Typically only approximately a third of the original oil in place (OOIP) is recovered by primary and secondary recovery processes, leaving two-thirds trapped in reservoirs as residual oil. Approximately half of world's discovered oil reserves are in carbonate reservoirs and many of these reservoirs are naturally fractured (Roehl and Choquette 1985). According to a recent review of 100 fractured reservoirs (Allan and Sun 2003), carbonate fractured reservoirs with high matrix porosity and low matrix permeability especially could use EOR processes. The oil recovery from these reservoirs is typically very low by conventional waterflooding, due in part to fractured carbonate reservoirs (about 80%) being originally less water-wet. Injected water will not penetrate easily into a less water-wetting porous matrix and so cannot displace that oil in place. Wettability of carbonate reservoirs has been widely recognized an important parameter in oil recovery by flooding technology (Tong et al. 2002; Morrow and Mason 2001; Zhou et al. 2000; Hirasaki and Zhang 2004). Because altering the wettability of a rock surface to preferentially more water-wet conditions is critical to oil recovery, alteration of reservoir wettability by surfactants has been intensively studied, and many research papers have been published (Spinler and Baldwin 2000). Vijapurapu and Rao (2004) studied the capability of certain ethoxy alcohol surfactants to alter wettability of the Yates reservoir rock to water-wet conditions. Seethepali et al. (2004) reported that several anionic surfactants in the presence of Na2CO3 can change a calcite surface wetted by a West Texas crude oil to intermediate/water-wet conditions as well as, or even better than, an efficient cationic surfactant. Zhang et al. (2004) investigated also the effect of electrolyte concentration, surfactant concentration, and water/oil ratio on wettability alteration. They reported that wettability of calcite surface can be altered to approximately intermediate water-wet to preferentially water-wet conditions with alkaline/anionic surfactant systems. Adsorption of anionic surfactants on a dolomite surface can be significantly reduced in the presence of sodium carbonate.


Author(s):  
Anuj Gupta

This paper presents results of an experimental investigation, supported by numerical analysis, to characterize oil recovery from fractured carbonate reservoirs. Imbibition recovery of oil is measured as a function of time for samples with varying wettability and shape factors. One of the objectives of this study is to verify the validity of exponential transfer function for matrix-fracture systems with varying wettability and flow-boundary conditions. Another objective is to establish the possibility of quantitatively determining the wettability of a sample based on history-matching of cumulative imbibition recovery and recovery rate data. The productivity of most carbonate oil and gas reservoirs is closely tied to the natural or stimulated fracture system present in the reservoir. Further, the recovery from naturally fractured reservoirs, in presence of aquifer drive or waterflooding is closely tied to the wettability of the matrix. The approach presented in this paper offers means to evaluate how recovery factor in a fractured system can be affected by wettability. A detailed understanding of rock-fluid interactions and wettability alterations at the fracturing face should help design improved strategies for exploiting naturally fractured carbonate reservoirs.


2021 ◽  
Author(s):  
Pasquale Pollio ◽  
Gianluca Fortunato ◽  
Salvatore Spagnolo ◽  
Gianni Baldassarri ◽  
Pasquale Cappuccio ◽  
...  

Abstract Water production has always afflicted mature fields due to the uneconomical nature of high water cut (WC) wells and the high cost of water management. Rigless coiled tubing (CT) interventions with increasingly articulated operating procedures are the key to a successful water reduction. In the scenario presented in this paper, high technological through tubing water shut off (WSO) for a long horizontal open hole (OH) well in a naturally fractured carbonate reservoir leads the way to new opportunities of production optimization. Engineering phase included sealant fluid re-design: the peculiar well architecture and fracture systems led to the customization of a sealant gel by modifying its rheological properties through laboratory tests, to improve effectiveness of worksite operations. A new ad-hoc procedure was defined, with a new selective pumping and testing technique tailored to each drain fracture. The use of Real-Time Hybrid Coiled Tubing Services (CT with fiber optic system coupled with real time capabilities of an electric cable) made it possible to optimize intervention reliability. Details of the operating procedure are given, with the aim of ensuring a successful outcome of the overall treatment Sealing gels are effective in plugging the formation, but in fractured environments the risk of losing the product before it starts to build viscosity is high. The success of the water shut off job has been obtained by using specific gel with thixotropic properties for an effective placement. In addition, the pumping has been performed in steps, each followed by a pressure test to assess the effectiveness of the plugging. Results are compared to two past interventions with equal scope in the same well: a first one with high volume of gel and an unoptimized pumping technique through CT and a second where a water reactive product was pumped by bullheading. The selective and repetitive approach pumping multiple batches of sealant system with CT stationary in front of a single fracture provided the best results from all three techniques. The real-time bottom hole data reading capability provided by hybrid CT allowed the placement of thru tubing bridge plugs (BP) with high accuracy and confidence with the ability to set electrically, therefore reducing risks related to hydraulic setting tools (i.e. premature setting). This also allows continual pumping during the run in hole (RIH) to clean up the zone prior to setting the BP. The combination of this innovative pumping technique and customization of the sealant fluid made it possible to achieve unprecedented water reduction in the field. The high technology CT supported the operation by providing continuous power and telemetry to the bottom hole assembly (BHA) for real time (RT) downhole diagnostics. Moreover, the operating procedures offer basic guidelines to successfully perform water shut off jobs in any other reservoir independent of its geological nature and structure.


Author(s):  
Adedapo Awolayo ◽  
Ali M. AlSumaiti ◽  
Hemanta Sarma

Wetting state in many fractured carbonate reservoirs exists between mixed-wet to oil-wet. Interaction of negatively charged carboxylic molecules in the crude oil with the rock surface, and high capillary pressure encountered during oil migration into the reservoir rock frequently render the rock oil-wet. Similarly, the existence of fractures solitarily governs the fluid flow dynamics in the porous media. Therefore, oil recovery from oil-wet fractured reservoirs is extremely tasking due to complex mechanisms involved in interactions between the double porosity system and the reservoir fluids. Waterflooding seems to be an economical technique to recover oil from fractured (water-wet) reservoirs where the rate of oil recovery is controlled by the water imbibition into the matrix from the fracture network. While for oil-wet reservoirs, waterflooding appears feeble and smart waterflooding looks very promising through varying of ions in the injection water. Hence changes the properties of the rock and improves waterflood performance. Middle East carbonate cores, dead crude oil, and smart water of different salinity were used in both static imbibition cells and centrifuge experiments. In order to gain better understanding of the relative contribution of oil recovery between fracture and matrix, different core configurations were used. The tests were carried out initially with formation brine and followed by different slugs of smart water. Presented in this work are the results obtained from the formation brine-oil imbibition tests and smart water-oil imbibition tests in fractured and unfractured cores. Results showed that waterflood recovery from fractured carbonate cores was about 50% of the OOIC while incremental displacement for smart water imbibition was observed nearly as high as 13%.


Sign in / Sign up

Export Citation Format

Share Document