Brown Field Production Optimization Using TDT Log for Zonal Isolation, BED-2 Field, Western Desert, Egypt

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
waleed osman ◽  
Waleed Abdelraoof ◽  
Tharwat Abdelfattah ◽  
Maher Mesbah
2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGRs as follows;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model can be used to propose the best tie-in location of future wells in addition to providing first-pass flow assurance indications throughout the field's life and under different network configurations. The model enabled the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime.


2021 ◽  
Author(s):  
Edwin Lawrence ◽  
Marie Bjoerdal Loevereide ◽  
Sanggeetha Kalidas ◽  
Ngoc Le Le ◽  
Sarjono Tasi Antoneus ◽  
...  

Abstract As part of the production optimization exercise in J field, an initiative has been taken to enhance the field production target without well intervention. J field is a mature field; the wells are mostly gas lifted, and currently it is in production decline mode. As part of this optimization exercise, a network model with multiple platforms was updated with the surface systems (separator, compressors, pumps, FPSO) and pipelines in place to understand the actual pressure drop across the system. Modelling and calibration of the well and network model was done for the entire field, and the calibrated model was used for the production optimization exercise. A representative model updated with the current operating conditions is the key for the field production and asset management. In this exercise, a multiphase flow simulator for wells and pipelines has been utilized. A total of ∼50 wells (inclusive of idle wells) has been included in the network model. Basically, the exercise started by updating the single-well model using latest well test data. During the calibration at well level, several steps were taken, such as evaluation of historical production, reservoir pressure, and well intervention. This will provide a better idea on the fine-tuning parameters. Upon completion of calibrating well models, the next level was calibration of network model at the platform level by matching against the platform operating conditions (platform production rates, separator/pipeline pressure). The last stage was performing field network model calibration to match the overall field performance. During the platform stage calibration, some parameters such as pipeline ID, horizontal flow correlation, friction factor, and holdup factor were fine-tuned to match the platform level operating conditions. Most of the wells in J field have been calibrated by meeting the success criterion, which is within +/-5% for the production rates. However, there were some challenges in matching several wells due to well test data validity especially wells located on remote platform where there is no dedicated test separator as well as the impact of gas breakthrough, which may interfere to performance of wells. These wells were decided to be retested in the following month. As for the platform level matching, five platforms were matched within +/-10% against the reported production rates. During the evaluation, it was observed there were some uncertainties in the reported water and gas rates (platform level vs. well test data). This is something that can be looked into for a better measurement in the future. By this observation, it was suggested to select Platform 1 with the most reliable test data as well as the platform rate for the optimization process and qualifying for the field trial. Nevertheless, with the representative network model, two scenarios, reducing separator pressure at platform level and gas lift optimization by an optimal gas lift rate allocation, were performed. The model predicts that a separator pressure reduction of 30 psi in Platform 1 has a potential gain of ∼300 BOPD, which is aligned with the field results. Apart from that, there was also a potential savings in gas by utilizing the predicted allocated gas lift injection rate.


2021 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
Agus Amperianto ◽  
Dyah Rini Ratnaningsih ◽  
Dedy Kristanto

AA field is a unitized asset operated by Corporate Oil Company since May 2018. The main producing formation of AA field is a reef build-up carbonate reservoir. The field has been on production since 2004 with OOIP of 297 MMSTB. As of November 2019 the cumulative production was estimated 120.7 MMSTB with RF of 41%. The carbonate reservoir has properties with relatively high heterogeneity –both vertically as well as laterally – which leads to production variation of the wells. The production performance shows an estimated 30% decline and significantly increasing water-cut. The production data shows a much faster water production compared with the cumulative production, which is also the greatest challenge in the AA field.There are several key contributing factors for the water production in AA field:Water channeling behind casing due to poor cement bond. This is supported by Chan Plot analysis.Uneven production of the wells leading to varying water rise and introduces difficulty in water contact determination.Water coning due to production exceeding the critical rate.Several efforts have been performed to optimize production, namely: identification of the potential of remaining hydrocarbon (bypassed oil) in the wells by evaluating current saturation evaluation through downhole surveillance, estimation of current water contact and cement bond improvement.The preparation steps of the production optimization process are summarized below:Screening of Candidate WellsEvaluation of Cement Bond QualityWellsite Execution for Bypassed Oil EvaluationWell PreparationOptimum C/O Log to Evaluate Current Saturation and to Identify Bypassed Oil ZonesBypassed Oil Interval ProductionThis section discusses one of successful cases in the production optimization effort implemented in the AA- field.AA-12 wellThe last production of AA-12 well was 84 BOPD. Chan plot showed possibility of water channeling, which was supported by CBL result. The zone of existing perforation interval was indicated to have “free pipe” behind the casing. Remedial cementing was then performed until sufficient zonal isolation was obtained. After subsequent CBL confirmed good zonal isolation, C/O log was then performed. The C/O log result indicated several reservoir zones with potential bypassed oil. The new production interval was selected based on following consideration: So between 55-60%, height above current OWC of 185 ft (56 m), distance to the adjacent wells of 1306 ft (398 m), porosity 12-17% and Production test of the new perforation resulted in 2186 BOPD with 0% water-cut.


2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGR values are as following;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model enables the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime and will be used to propose new locations and optimize the tie-in location of future wells in addition to providing flow assurance indications throughout the field's life and under different network configurations.


2021 ◽  
Author(s):  
Abdulmalik Ibragimov ◽  
Andrey Kan

Abstract Field production constrained with surface facilities on gas handling have to deal with well rates optimization by reducing gas oil ratio of the field production. This means the best way of reducing gas oil ratio on field level is not by closing wells with the highest gas oil ratio but chocking back wells where gas breakthrough occurred and GOR of a well is rate dependent [1]. In this paper, authors modeled and analyzed wells with gas breakthrough in single porosity and dual porosity sector models. The analysis showed single porosity models underestimate severity of gas breakthrough and fail to predict rate dependent GOR of a well in the field. Also, based on the sector model using machine-learning technique an empirical equation was developed to estimate rate dependent GOR of a well which can be further used in field level production optimization exercise to reach maximum liquid production under gas processing constraints.


Author(s):  
Slamet Widodo Kurniansyah ◽  
Esaim Mustafa Abrahim Omar ◽  
Dwi Atty Mardiana

<em>Fields "X" is an old field in the South East Sumatra Block. The area was developed using ten platforms. One main problems on this field is the disruption of some wells productivity due to flow constraints in the piping network. The objective of this paper is to evaluate the pipeline network for area "X1" using simulation model. The simulation results show that there are bottlenecking and backpressure problems in the network. By fixing the problems, total oil production in this area can be increased up to 19 percent or 1,006.2 BOPD higer than initial condition.</em>


Sign in / Sign up

Export Citation Format

Share Document