Diagnosis of Formation Damage By Rock Deformation/Compaction Through Numerical Well-Test Simulations

2006 ◽  
Author(s):  
Osmar Rene Alcalde ◽  
Lawrence W. Teufel

2002 ◽  
Author(s):  
Jose Gildardo Osorio ◽  
Alejandro Wills ◽  
Osmar Rene Alcalde


2015 ◽  
Vol 126 ◽  
pp. 512-516
Author(s):  
Yizhao Wan ◽  
Yuewu Liu ◽  
Weiping Ouyang ◽  
Congcong Niu ◽  
Guofeng Han ◽  
...  


2001 ◽  
Author(s):  
Claudia L. Pinzon ◽  
Her-Yuan Chen ◽  
Lawrence W. Teufel




Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jia Zhang ◽  
Shiqing Cheng ◽  
Shiying Di ◽  
Zhanwu Gao ◽  
Rui Yang ◽  
...  

Formation damage usually occurs in near-well regions for injection wells completed in offshore oilfields under the development of line drive patterns. However, current works on characterizing the damage by well test analysis were basically focused on using single-phase analogy to solve two-phase flow issues, resulting in errors on the diagnosis and interpretation of transient pressure data. In this paper, we developed a two-phase model to simulate the pressure transient behavior of a water injection well in a multiwell system. To solve the model more efficiently, we used the finite volume method to discretize partially differential flow equations in a hybrid grid system, including both Cartesian and radial meshes. The fully implicit Newton-Raphson method was also employed to solve the equations in our model. With this methodology, we compared the resulting solutions with a commercial simulator. Our results keep a good agreement with the solutions from the simulator. We then graphed the solutions on a log-log plot and concluded that the effects of transitional zone and interwell interference can be individually identified by analyzing specific flow regimes on the plot. Further, seven scenarios were raised to understand the parameters which dominate the pressure transient behavior of these flow regimes. Finally, we showed a workflow and verified the applicability of our model by demonstrating a case study in a Chinese offshore oilfield. Our model provides a useful tool to reduce errors in the interpretation of pressure transient data derived from injection wells located in a line drive pattern.



PETRO ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 131 ◽  
Author(s):  
Nadhira Andini ◽  
Muh Taufiq Fathaddin ◽  
Cahaya Rosyidan

<p><em>Th</em><em>e pressure behaviour of a well can be easily measured and is useful in analysing and predicting reservoir performance or diagnosing the condition of a well. Since a well test and subsequent pressure transient analysis is the most powerful tool available to the reservoir engineer for determining reservoir characteristics, the subject of well test analysis has attracted considerable attention. A well test is the only method available to the reservoir engineer for examining the dynamic response in the reservoir and considerable information can be gained from a well test. A well test is the examination of the transient behaviour of a porous reservoir as the result of a temporary change in production conditions performed over a relatively short period of time in comparison to the producing life of field. The build up can be both the part of the test when the well is shut in and a value represented by the difference in the pressure measured at any time during the build up and the final flowing pressure. The most common megods of transient (time dependant) pressure analysis required that data points be selected such that they fell on a well-defined straight line on either semi-logarithmic or cartesian graph paper. The well test analyst must the insure that the proper straight line has been chosen if more than one line can be drawn through the plotted data. This aspect of interpretation of well test data requires the input of reservoir engineer. Equally important is the design of a well test to ensure that the duration and format of the test is such that it produces good quality data for analysis. The results obtained from transient pressure analysis are used to discover the formation damage by detemining skin. This experiment will be analyzed oil well which is NA-20 well in Senja field. The results from the analysis of the data obtained on NA-20 well is 4.84 mD permeability, skin +1.42, pressure changes due to skin (ΔPskin) 264.384 psi, and flow efficiency 0.842 with 851.61 ft radius of investigation. The result from the analysis of the well showed that NA-20 well in Senja field have formation damage.</em></p>



Sign in / Sign up

Export Citation Format

Share Document