scholarly journals Development of a Numerical Well Test Simulator for Polymer-surfactant Flooding and the Pressure Transient Response Study

Author(s):  
Zhichun Jia ◽  
Daolun Li ◽  
Detang Lu
2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Jia Zhichun ◽  
Li Daolun ◽  
Yang Jinghai ◽  
Xue Zhenggang ◽  
Lu Detang

Well test analysis for polymer flooding is different from traditional well test analysis because of the non-Newtonian properties of underground flow and other mechanisms involved in polymer flooding. Few of the present works have proposed a numerical approach of pressure transient analysis which fully considers the non-Newtonian effect of real polymer solution and interprets the polymer rheology from details of pressure transient response. In this study, a two-phase four-component fully implicit numerical model incorporating shear thinning effect for polymer flooding based on PEBI (Perpendicular Bisection) grid is developed to study transient pressure responses in polymer flooding reservoirs. Parametric studies are conducted to quantify the effect of shear thinning and polymer concentration on the pressure transient response. Results show that shear thinning effect leads to obvious and characteristic nonsmoothness on pressure derivative curves, and the oscillation amplitude of the shear-thinning-induced nonsmoothness is related to the viscosity change decided by shear thinning effect and polymer concentration. Practical applications are carried out with shut-in data obtained in Daqing oil field, which validates our findings. The proposed method and the findings in this paper show significant importance for well test analysis for polymer flooding and the determination of the polymer in situ rheology.


2019 ◽  
Vol 20 (2) ◽  
pp. 61-69
Author(s):  
Ibrahim Saeb Salih ◽  
Hussain Ali Baker

The objective of the conventional well testing technique is to evaluate well- reservoir interaction through determining the flow capacity and well potential on a short-term basis by relying on the transient pressure response methodology. The well testing analysis is a major input to the reservoir simulation model to validate the near wellbore characteristics and update the variables that are normally function of time such as skin, permeability and productivity multipliers. Well test analysis models are normally built on analytical approaches with fundamental physical of homogenous media with line source solution. Many developments in the last decade were made to increase the resolution of transient response derivation to meet the complexity of well and flow media.    Semi-analytical modeling for the pressure transient response in complex well architecture and complex reservoirs were adopted in this research. The semi analytical solution was based on coupling the boundary condition of source function to the well segment. Coupling well-reservoir on sliced based technique was used to re-produce homogenous isotropic media from several source functions of different properties. The approach can model different well geometries penetrated complex reservoirs. A computer package was prepared to model the pressure transient response of horizontal, dual-lateral, multi-lateral wells in complex anisotropic reservoirs, multilayered, compartmentalized, system of various boundary conditions such as: bottom support aquifers, edge supported, gas caps, interference of injection. The validity of the proposed model was successfully checked by using the commercial simulator.


DYNA ◽  
2019 ◽  
Vol 86 (210) ◽  
pp. 108-114
Author(s):  
Freddy Humberto Escobar ◽  
Angela María Palomino ◽  
Alfredo Ghisays Ruiz

Flow behind the casing has normally been identified and quantified using production logging tools. Very few applications of pressure transient analysis, which is much cheaper, have been devoted to determining compromised cemented zones. In this work, a methodology for a well test interpretation for determining conductivity behind the casing is developed. It provided good results with synthetic examples.


2015 ◽  
Vol 126 ◽  
pp. 512-516
Author(s):  
Yizhao Wan ◽  
Yuewu Liu ◽  
Weiping Ouyang ◽  
Congcong Niu ◽  
Guofeng Han ◽  
...  

2001 ◽  
Author(s):  
Claudia L. Pinzon ◽  
Her-Yuan Chen ◽  
Lawrence W. Teufel

Sign in / Sign up

Export Citation Format

Share Document