Abstract
Engineered water injection (EWI) has gained popularity as an effective technique for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the petroleum industry. In this study, a numerical simulation model is developed and used to investigate the hybrid effect of surfactant-EWI in carbonates. This developed model was validated by history-matching a recently conducted surfactant coreflood in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during engineered water injection. The geochemical reactions considered include: aqueous, dissolution/precipitation, and ion- exchange reactions. Also, different simulation scenarios were considered including waterflooding, surfactant flooding, engineered water injection, and the hybrid surfactant-EWI technique.
For the case of EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that for the hybrid surfactant-EWI, wettability alteration is considered as the controlling mechanism where surfactant boosts oil recovery rate through increasing oil relative permeability while EWI reduces residual oil. Moreover, the simulation runs showed that the hybrid surfactant-EWI is a promising technique for enhancing oil recovery from carbonates under harsh conditions. The hybrid surfactant-EWI outperformed other injection techniques followed by EWI, then surfactant flooding, and least waterflooding. This work gives more insight into the application of hybrid surfactant-EWI on enhancing oil recovery from carbonates.