surfactant flooding
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 90)

H-INDEX

27
(FIVE YEARS 6)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122867
Author(s):  
Omid Tavakkoli ◽  
Hesam Kamyab ◽  
Mahdi Shariati ◽  
Abdeliazim Mustafa Mohamed ◽  
Radzuan Junin

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8310
Author(s):  
Aghil Moslemizadeh ◽  
Hossein Khayati ◽  
Mohammad Madani ◽  
Mehdi Ghasemi ◽  
Khalil Shahbazi ◽  
...  

For the first time, the present work assesses the feasibility of using Korean red ginseng root extract, a non-ionic surfactant, for the purposes of enhanced oil recovery (EOR). The surfactant is characterized by Fourier-transform infrared spectroscopy (FT-IR) analysis. Pendant drop and sessile drop techniques are employed to study the oil–water interfacial tension (IFT) and wettability nature of the sandstone rock, respectively. In addition, oil recovery enhancement is investigated using micromodel and core floods. In the salt-free system, IFT measurements indicate that the surfactant carries a critical micelle concentration of 5 g/L. In a saline medium (up to 50 g/L), the addition of a surfactant with different concentrations leads to an IFT reduction of 47.28–84.21%. In a constant surfactant concentration, a contact angle reduction is observed in the range of 5.61–9.30°, depending on salinity rate, revealing a wettability alteration toward more water-wet. Surfactant flooding in the glass micromodel provides a more uniform sweeping, which leads to an oil recovery enhancement of 3.02–11.19%, depending on the extent of salinity. An optimal salt concentration equal to 30 g/L can be recognized according to the results of previous tests. Surfactant flooding (10 g/L) in optimal salt concentration achieves an additional oil recovery of 7.52% after conventional water flooding.


2021 ◽  
Author(s):  
Ahmed Adila ◽  
Emad W. Al-Shalabi ◽  
Waleed AlAmeri

Abstract Engineered water injection (EWI) has gained popularity as an effective technique for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the petroleum industry. In this study, a numerical simulation model is developed and used to investigate the hybrid effect of surfactant-EWI in carbonates. This developed model was validated by history-matching a recently conducted surfactant coreflood in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during engineered water injection. The geochemical reactions considered include: aqueous, dissolution/precipitation, and ion- exchange reactions. Also, different simulation scenarios were considered including waterflooding, surfactant flooding, engineered water injection, and the hybrid surfactant-EWI technique. For the case of EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that for the hybrid surfactant-EWI, wettability alteration is considered as the controlling mechanism where surfactant boosts oil recovery rate through increasing oil relative permeability while EWI reduces residual oil. Moreover, the simulation runs showed that the hybrid surfactant-EWI is a promising technique for enhancing oil recovery from carbonates under harsh conditions. The hybrid surfactant-EWI outperformed other injection techniques followed by EWI, then surfactant flooding, and least waterflooding. This work gives more insight into the application of hybrid surfactant-EWI on enhancing oil recovery from carbonates.


2021 ◽  
Author(s):  
Boris A. Samson ◽  
Marat Shaykhattarov

Abstract Consistent set of algorithms to calculate phase relative permeability and capillary pressure values in the four-phase representation suitable for surfactant flooding simulation has been derived. The novel formulation resolves difficulties with applying existing three-phase approaches, and it ensures continuity of transport characteristics at solubilization changes in phase composition.


2021 ◽  
Author(s):  
Jackson Pola ◽  
Sebastian Geiger ◽  
Eric Mackay ◽  
Christine Maier ◽  
Ali Al-Rudaini

Abstract We demonstrate how geological heterogeneity impacts the effectiveness of surfactant-based enhanced oil recovery (EOR) at larger (inter-well and sector) scales when upscaling small (core) scale heterogeneity and physicochemical processes. We used two experimental datasets of surfactant-based EOR where spontaneous imbibition and viscous displacement, respectively dominate recovery. We built 3D core-scale simulation models to match the data and parameterize surfactant models. The results were deployed in high-resolution models that preserve the complexity and heterogeneity of carbonate formations in the inter-well and sector scale. These larger-scale models were based on two outcrop analogues from France and Morroco, respectively, which capture the reservoir architectures inherent to the productive carbonate reservoir systems in the Middle East. We then assessed and quantified the error in production forecast that arises due to upscaling, upgridding, and simplification of geological heterogeneity. Simulation results showed a broad range of recovery predictions. The variability arises from the choice of surfactant model parameterization (i.e., spontaneous imbibition vs viscous displacement) and the way the heterogeneity in the inter-well and sector models was upscaled and simplified. We found that the parameterization of surfactant models has a significant impact on recovery predictions. Oil recovery at the larger scale was observed to be higher when using the parametrization derived from viscous displacement experiments compared to parameterization from spontaneous imbibition experiments. This observation clearly demonstrated how core-scale processes impact recovery predictions at the larger scales. Also, the variability in recovery prediction due to the choice of surfactant model was as large as the variability arising from upscaling and upgridding. Upscaled and upgridded models overestimated recovery because of the simplified geology. Grid coarsening exacerbated this effect because of the increased numerical dispersion. These results emphasize the need to use correctly configured surfactant models, appropriate grid resolution that minimizes numerical dispersion, and properly upscaled reservoir models to accurately forecast surfactant floods. Our findings present new insights into how the uncertainty in production forecasts during surfactant flooding depends on the way surfactant models are parameterized, how the reservoir geology is upscaled, and how numerical dispersion is impacted by grid coarsening.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Xiang'an Yue ◽  
Jirui Zou ◽  
Lijuan Zhang ◽  
Kang Tang

Abstract In this study, a visualized physical model of artificial oil film was firstly designed to investigate the oil film displacement mechanisms. Numerous comparative experiments were conducted to explore the detachment mechanisms of oil film and oil recovery performances in different fluid mediums with flow rate. In addition, the of influencing factors of oil film were comprehensively evaluated, which mainly includes: flow rate, surfactant behaviors, and crude oil viscosity. The results show that, (1) regardless of the viscosity of crude oil, flow rate presents a limited contribution to the detachment of oil film and the maximum of ultimate oil film displacement efficiency is only approximately 10%; (2) surfactant flooding has a synergistic effect on the oil film displacement on two aspects of interfacial tension (ITF) reduction and emulsifying capacity. Giving the most outstanding performance for two oil samples in all runs, IFT reduction of ultra-low value is not the only decisive factor affecting oil film displacement efficiency, but the emulsifying capability plays the key role to the detachment of oil film due to effect of emulsifying and dispersing on oil film; (3) the increasing flow rate of surfactant flooding is able to enhance the detachment of oil film but has an objective effect on the final oil film displacement efficiency; (4) flow rate have the much influence on the detachment of oil film, but the most easily controlled factor is the surfactant property. The finding provides basis for oil film detachment and surfactant selection EOR application.


2021 ◽  
Author(s):  
Olaitan Akinyele ◽  
Karl D. Stephen

Abstract Numerical simulation of surfactant flooding using conventional reservoir simulation models can lead to unreliable forecasts and bad decisions due to the appearance of numerical effects. The simulations give approximate solutions to systems of nonlinear partial differential equations describing the physical behavior of surfactant flooding by combining multiphase flow in porous media with surfactant transport. The approximations are made by discretization of time and space which can lead to spurious pulses or deviations in the model outcome. In this work, the black oil model was simulated using the decoupled implicit method for various conditions of reservoir scale models to investigate behaviour in comparison with the analytical solution obtained from fractional flow theory. We investigated changes to cell size and time step as well as the properties of the surfactant and how it affects miscibility and flow. The main aim of this study was to understand pulse like behavior that has been observed in the water bank to identify cause and associated conditions. We report for the first time that the pulses occur in association with the simulated surfactant water flood front and are induced by a sharp change in relative permeability as the interfacial tension changes. Pulses are diminished when the adsorption rate was within the value of 0.0002kg/kg to 0.0005kg/kg. The pulses are absent for high resolution model of 5000 cells in x direction with a typical cell size as used in well-scale models. The growth or damping of these pulses may vary from case to case but in this instance was a result of the combined impact of relative mobility, numerical dispersion, interfacial tension and miscibility. Oil recovery under the numerical problems reduced the performance of the flood, due to large amounts of pulses produced. Thus, it is important to improve existing models and use appropriate guidelines to stop oscillations and remove errors.


Sign in / Sign up

Export Citation Format

Share Document