scholarly journals The grapevine homeobox gene VvHB58 influences ovule and fruit development through multiple hormonal signaling pathways

2019 ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Abstract Background: Seedlessness is one of the most valuable traits in grapevine (Vitis vinifera), especially for the raisin and table grape industries. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed abortion in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed abortion is rarely reported. Results: Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was dramatically differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the sequence and cytosine methylation within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed abortion in seedless and seeded grapes, suggesting hypomethylation during ovule development may be associated with seed abortion. Conclusion: VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for seedless grapes.

2019 ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background: The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. Results: Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. Conclusion: VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


2019 ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background: Seedlessness is one of the most valuable traits in grapevine ( Vitis vinifera ), especially for the raisin and table grape industries. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. Results: Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars . Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number , and larger endosperm cells. Analysis of the sequence and cytosine methylation within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additio nally, several DNA methylation-related gene s were expressed differentially during seed development stages in seedless and seeded grapes , suggesting changes in methylation levels during seed development may be associated with seed abortion . Conclusion: VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. Results Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. Conclusion VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


2019 ◽  
Author(s):  
Yunduan Li ◽  
Songlin Zhang ◽  
Ruzhuang Dong ◽  
Li Wang ◽  
Jin Yao ◽  
...  

Abstract Background: The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported.Results: Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion.Conclusion: VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.


2020 ◽  
Author(s):  
Tania Chakraborty ◽  
Timmy Kendall ◽  
Jeffrey W. Grover ◽  
Rebecca A. Mosher

AbstractBackgroundRNA directed DNA methylation (RdDM) initiates cytosine methylation in all contexts, and maintains asymmetric CHH methylation (where H is any base other than G). Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development. RdDM is required in the maternal sporophyte, suggesting that small RNAs from the maternal sporophyte might translocate to the developing embryo, triggering DNA methylation that prevents seed abortion. This raises the question whether embryo hypermethylation is autonomously regulated by the embryo itself or influenced by the maternal sporophyte.ResultsHere, we demonstrate that B. rapa embryos are hypermethylated in both euchromatin and heterochromatin and that this process requires RdDM. Contrary to current models, B. rapa embryo hypermethylation is not correlated with demethylation of the endosperm. We also show that maternal somatic RdDM is not sufficient for global embryo hypermethylation, and we find no compelling evidence for maternal somatic influence over embryo methylation at any locus. Decoupling of maternal and zygotic RdDM leads to successful seed development despite loss of embryo CHH hypermethylation.ConclusionsWe conclude that embryo CHH hypermethylation is conserved, autonomously controlled, and not required for embryo development. Furthermore, maternal somatic RdDM, while required for seed development, does not directly influence embryo methylation patterns.


2008 ◽  
Vol 78 (Suppl_1) ◽  
pp. 101-101
Author(s):  
Anjana Bhardwaj ◽  
Sreenath Shanker ◽  
Hye-Won Song ◽  
Kichiya Suzuki ◽  
Marie-Claire Orgebin-Crist ◽  
...  

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 525D-525
Author(s):  
Rongcai Yuan ◽  
Duane W. Greene

BA applied at the 10-mm stage at 50 and 100 ppm thinned, increased fruit size, and seed abortion. Net photosynthesis was decreased and dark respiration was increased when temperature following BA application was high (30°C), whereas there was no effect when temperature was lower (20°C). The seed number in abscising fruit was greater in BA-treated fruit than in control fruit. The number of viable seeds in BA-treated fruit was reduced. Tipping the bourse shoot increased fruit set, regardless of BA treatment. BA did not thin fruit with 25 leaves or greater. The translocation of 14C-sorbital from leaves to fruit was promoted by BA application to the fruit, but not when BA was applied to the leaves. The thinning induced by BA will be discussed in relation to available carbohydrate.


Sign in / Sign up

Export Citation Format

Share Document