carbohydrate status
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 5)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Hillel Brukental ◽  
Adi Doron-Faigenboim ◽  
Irit Bar-Ya’akov ◽  
Rotem Harel-Beja ◽  
Ziv Attia ◽  
...  

Almond [Prunus dulcis (Mill.) D. A. Webb] is a major deciduous fruit tree crop worldwide. During dormancy, under warmer temperatures and inadequate chilling hours, the plant metabolic activity increases and may lead to carbohydrate deficiency. Prunus arabica (Olivier) Meikle is a bushy wild almond species known for its green, unbarked stem, which stays green even during the dormancy period. Our study revealed that P. arabica green stems assimilate significantly high rates of CO2 during the winter as compared to P. dulcis cv. Um el Fahem (U.E.F.) and may improve carbohydrate status throughout dormancy. To uncover the genetic inheritance and mechanism behind the P. arabica stem photosynthetic capability (SPC), a segregated F1 population was generated by crossing P. arabica to U.E.F. Both parent’s whole genome was sequenced, and SNP calling identified 4,887 informative SNPs for genotyping. A robust genetic map for U.E.F. and P. arabica was constructed (971 and 571 markers, respectively). QTL mapping and association study for the SPC phenotype revealed major QTL [log of odd (LOD) = 20.8] on chromosome 7 and another minor but significant QTL on chromosome 1 (LOD = 3.9). As expected, the P. arabica allele in the current loci significantly increased the SPC phenotype. Finally, a list of 64 candidate genes was generated. This work sets the stage for future research to investigate the mechanism regulating the SPC trait, how it affects the tree’s physiology, and its importance for breeding new cultivars better adapted to high winter temperatures.


2021 ◽  
Author(s):  
Hillel Brukental ◽  
Adi Doron-Faigenboim ◽  
Irit Bar-Ya’akov ◽  
Rotem Harel-Beja ◽  
Ziv Attia ◽  
...  

AbstractAlmond (Prunus dulcis (Mill.) D. A. Webb) is a major deciduous fruit tree crop worldwide. During dormancy, under warmer temperatures and inadequate chilling hours, the plant metabolic activity increases and may lead to carbohydrate deficiency. Prunus arabica (Olivier) Meikle is a bushy wild almond species known for its green, un-barked stem, which stays green even during the dormancy period. Our study revealed that P. arabica green stems assimilate significantly high rates of CO2 during the winter as compared to P. dulcis cv. Um el Fahem (U.E.F), and may improve carbohydrate status throughout dormancy. To uncover the genetic inheritance and mechanism behind the P. arabicaStem Photosynthetic Capability (SPC), a segregated F1 population was generated by crossing P. arabica to U.E.F. Both parent’s whole genome was sequenced, and a single nucleotide polymorphism (SNP) calling identified 4,887 informative SNPs for genotyping. A robust genetic map for U.E.F and P. arabica was constructed (971 and 571 markers, respectively). QTL mapping and association study for the SPC phenotype revealed major QTL (log of odd (LOD)=20.8) on chromosome 7, and another minor but significant QTL on chromosome 1 (LOD=3.9). Finally, a list of 73 candidate genes was generated. This work sets the stage for future research to investigate the mechanism regulating the SPC trait, how it affects the tree’s physiology, and its importance for breeding new cultivars better adapted to high winter temperatures.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 283 ◽  
Author(s):  
Monika Kofroňová ◽  
Aneta Hrdinová ◽  
Petra Mašková ◽  
Jana Tremlová ◽  
Petr Soudek ◽  
...  

Arsenic (As) contaminates the food chain and decreases agricultural production through impairing plants, particularly due to oxidative stress. To better understand the As tolerance mechanisms, two contrasting tobacco genotypes: As-sensitive Nicotiana sylvestris and As-tolerant N.tabacum, cv. ‘Wisconsin’ were analyzed. The most meaningful differences were found in the carbohydrate status, neglected so far in the As context. In the tolerant genotype, contrary to the sensitive one, net photosynthesis rates and saccharide levels were unaffected by As exposure. Importantly, the total antioxidant capacity was far stronger in the As-tolerant genotype, based on higher antioxidants levels (e.g., phenolics, ascorbate, glutathione) and activities and/or appropriate localizations of antioxidative enzymes, manifested as reverse root/shoot activities in the selected genotypes. Accordingly, malondialdehyde levels, a lipid peroxidation marker, increased only in sensitive tobacco, indicating efficient membrane protection in As-tolerant species. We bring new evidence of the orchestrated action of a broad spectrum of both antioxidant enzymes and molecules essential for As stress coping. For the first time, we propose robust carbohydrate metabolism based on undisturbed photosynthesis to be crucial not only for subsidizing C and energy for defense but also for participating in direct reactive oxygen species (ROS) quenching. The collected data and suggestions can serve as a basis for the selection of plant As phytoremediators or for targeted breeding of tolerant crops.


2019 ◽  
Vol 144 (1) ◽  
pp. 31-37
Author(s):  
Mokhles A. Elsysy ◽  
Michael V. Mickelbart ◽  
Peter M. Hirst

Uniform annual apple (Malus ×domestica) fruit production is highly dependent on consistent flower formation from year to year, as inconsistent flowering can lead to the biennial bearing observed in some high-value cultivars. The presence of fruit on a spur has been considered the main cause of the expression of biennial bearing and the inhibition of flower initiation, with a number of theories being introduced to explain the phenomenon. In the current experiment, individual spurs of annual bearing cultivars (Gala, Ruby Jon, and Pink Lady) and biennial bearing cultivars (Honeycrisp, Fuji, and Golden Delicious) were thinned to a single fruit or completely defruited at petal fall. Spurs were sampled at the end of the growing season. Effects of fruiting on spur characteristics such as spur and bourse leaf area, stomatal density, leaf gas exchange, and flower formation were determined. Across all cultivars, the presence of fruit on a spur did not affect spur characteristics or flower formation compared with nonfruiting spurs. Similarly, flowering was unaffected by those factors associated with greater spur carbohydrate status, such as bourse leaf area and assimilation rate. Cultivars with greater transpiration and stomatal conductance (gs) rates had lower rates of flower formation. Future studies should focus on xylem flow and expression of genes regulating flowering and plant growth regulators in annual and biennial bearing cultivars.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Dylan N. Dillaway ◽  
Michael C. Tyree ◽  
John K. Jackson

The ability of a plant to acclimate metabolically to thermal changes is necessary to maintain a positive carbon balance. It is likely that a plant’s acclimatory potential is a function of leaf nitrogen and/or leaf carbohydrate status. Two important issues assessed concerning leaf dark respiration (RD) were the effects of growth temperature, light, and fertilization on thermal respiratory acclimation and changes in respiratory parameters (indicative of acclimation) throughout the dark period. Soybean (Glycine max (L.) Merr.) plants were grown in greenhouses under a full factorial treatment arrangement of temperature, light, and nutrition. RD was measured at three temperatures to estimate respiratory parameters (cool respiration R13, warm respiration R25, and the temperature response of respiration EO) three times throughout the night (6 pm, 11 pm, and 4 am). Respiratory parameters did not differ throughout the night. Thermal acclimation was observed in warm grown plants under optimal growing conditions (i.e., high light and high fertilization); however, acclimation did not occur when limitations were imposed (i.e., shade or no fertilization). These findings suggest thermal acclimation will occur so long as plants do not undergo limitations. This may have major implications for natural ecosystems and may play a role in assessing an ecosystems resiliency to climate change.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
María L. Couce ◽  
Paula Sánchez-Pintos ◽  
Isidro Vitoria ◽  
María-José De Castro ◽  
Luís Aldámiz-Echevarría ◽  
...  
Keyword(s):  

2016 ◽  
Vol 57 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Anna M. Davidson ◽  
David Da Silva ◽  
Sebastian Saa ◽  
Phillip Mann ◽  
Theodore M. DeJong

Sign in / Sign up

Export Citation Format

Share Document