gata transcription factors
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 22)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 7 (12) ◽  
pp. 1013
Author(s):  
Yanan Chen ◽  
Yingzi Cao ◽  
Yunpeng Gai ◽  
Haijie Ma ◽  
Zengrong Zhu ◽  
...  

In the present study, we identified six GATA transcription factors (AaAreA, AaAreB, AaLreA, AaLreB, AaNsdD, and AaSreA) and characterized their functions in response to environmental stress and virulence in the tangerine pathotype of Alternaria alternata. The targeted gene knockout of each of the GATA-coding genes decreased the growth to varying degrees. The mutation of AaAreA, AaAreB, AaLreB, or AaNsdD decreased the conidiation. All the GATA transcription factors were found to be required for tolerance to cumyl hydroperoxide and tert-butyl-hydroperoxide (oxidants) and Congo red (a cell-wall-destructing agent). Pathogenicity assays assessed on detached citrus leaves revealed that mutations of AaAreA, AaLreA, AaLreB, or AaNsdD significantly decreased the fungal virulence. A comparative transcriptome analysis between the ∆AreA mutant and the wild-type strain revealed that the inactivation of AaAreA led to alterations in the expression of genes involved in a number of biological processes, including oxidoreductase activity, amino acid metabolism, and secondary metabolite biogenesis. Taken together, our findings revealed that GATA-coding genes play diverse roles in response to environmental stress and are important regulators involved in fungal development, conidiation, ROS detoxification, as well as pathogenesis. This study, for the first time, systemically underlines the critical role of GATA transcription factors in response to environmental stress and virulence in A. alternata.


2021 ◽  
Vol 22 (22) ◽  
pp. 12492
Author(s):  
Muhammad Aamir Manzoor ◽  
Irfan Ali Sabir ◽  
Iftikhar Hussain Shah ◽  
Han Wang ◽  
Zhao Yu ◽  
...  

The GATA gene family is one of the most important transcription factors (TFs). It extensively exists in plants, contributes to diverse biological processes such as the development process, and responds to environmental stress. Although the GATA gene family has been comprehensively and systematically studied in many species, less is known about GATA genes in Chinese pears (Pyrus bretschneideri). In the current study, the GATA gene family in the four Rosaceae genomes was identified, its structural characteristics identified, and a comparative analysis of its properties was carried out. Ninety-two encoded GATA proteins were authenticated in the four Rosaceae genomes (Pyrus bretschneideri, Prunus avium, Prunus mume, and Prunus persica) and categorized into four subfamilies (Ⅰ–Ⅳ) according to phylogeny. The majority of GATA genes contained one to two introns and conserved motif composition analysis revealed their functional divergence. Whole-genome duplications (WGDs) and dispersed duplication (DSD) played a key role in the expansion of the GATA gene family. The microarray indicated that, among P. bretschneideri, P. avium, P. mume and P. persica, GATA duplicated regions were more conserved between Pyrus bretschneideri and Prunus persica with 32 orthologous genes pairs. The physicochemical parameters, duplication patterns, non-synonymous (ka), and synonymous mutation rate (ks) and GO annotation ontology were performed using different bioinformatics tools. cis-elements respond to various phytohormones, abiotic/biotic stress, and light-responsive were found in the promoter regions of GATA genes which were induced via stimuli. Furthermore, subcellular localization of the PbGATA22 gene product was investigated, showing that it was present in the nucleus of tobacco (Nicotiana tabacum) epidermal cells. Finally, in silico analysis was performed on various organs (bud, leaf, stem, ovary, petal, and sepal) and different developmental stages of fruit. Subsequently, the expression profiles of PbGATA genes were extensively expressed under exogenous hormonal treatments of SA (salicylic acid), MeJA (methyl jasmonate), and ABA (abscisic acid) indicating that play important role in hormone signaling pathways. A comprehensive analysis of GATA transcription factors was performed through systematic biological approaches and comparative genomics to establish a theoretical base for further structural and functional investigations in Rosaceae species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Guo ◽  
Xionghui Bai ◽  
Keli Dai ◽  
Xiangyang Yuan ◽  
Pingyi Guo ◽  
...  

GATA transcription factors (TFs) are type IV zinc-finger proteins that have roles in plant development and growth. The 27 GATA TFs identified in the Brachypodium distachyon genome in this study were unevenly distributed across all five chromosomes and classified into four subgroups. Phylogenesis-related GATAs shared similar gene structures and conserved motifs. Expression profiles showed that all BdGATA genes were expressed in leaves and most were induced by PEG treatment. BdGATA13 was predominantly expressed in leaf tissue and phylogenetically close to OsSNFL1, AtGNC, and AtGNL. Its protein was detected in the nucleus by subcellular localization analysis. Overexpression of BdGATA13 in transgenic Arabidopsis resulted in darker green leaves, later flowering, and more importantly, enhanced drought tolerance compared to the wild type. BdGATA13 also promoted primary root development under GA treatment. These results lay a foundation for better understanding the function of GATA genes in B. distachyon and other plants.


2021 ◽  
Vol 9 (4) ◽  
pp. 407-416
Author(s):  
Satyabrata Nanda ◽  
◽  
Gagan Kumar ◽  
Sudheer Kumar Yadav ◽  
Sajid Hussain ◽  
...  

The GATA transcription factors (TFs) play a crucial role in regulating various physiological processes in plants. Identification and characterization of the GATA TF family has been carried out in several important grass species, including rice, maize, and bamboo. However, no information is available on the GATA TFs in the C3 grass species Dichanthelium oligosanthes. In the current study, 31 GATA genes have been identified in the D. oligosanthes genome by stringent bioinformatics analysis. The exon-intron arrangement analysis of the DoGATAs via the Gene Structure Display Server (GSDS 2.0) revealed the redundancy and differences in their gene structural organization. In addition, the sequence comparisons within the DoGATAs via BLAST revealed 11 numbers of putative paralogs. Similarly, the BLAST comparisons among the OsGATAs and DoGATAs resulted in the identification of 21 orthologs. Structural analysis of the identified DoGATAs through Simple Modular Architecture Research Tool (SMART), Conserved Domain Database (CDD), and Multiple Expectation Maximization for Motif Elicitation (MEME) revealed that all of them possess the signature GATA domain and the C-X2-C-X18-C-X2-C consensus sequence. The phylogenetic analysis via MEGA divided the DoGATAs into four groups along with rice and Arabidopsis GATAs. In addition, the subcellular localization, gene ontology, and other peptide functional prediction results further supported the DoGATAs to be putative GATA genes. Moreover, the findings of this study can serve as a basic framework for the isolation and functional characterization of GATA genes in D. oligosanthes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mangi Kim ◽  
Hong Xi ◽  
Suhyeon Park ◽  
Yunho Yun ◽  
Jongsun Park

AbstractGATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17–20CX2C) followed by a basic region. We identified 262 GATA genes (389 GATA TFs) from seven Populus genomes using the pipeline of GATA-TFDB. Alternative splicing forms of Populus GATA genes exhibit dynamics of GATA gene structures including partial or full loss of GATA domain and additional domains. Subfamily III of Populus GATA genes display lack CCT and/or TIFY domains. 21 Populus GATA gene clusters (PCs) were defined in the phylogenetic tree of GATA domains, suggesting the possibility of subfunctionalization and neofunctionalization. Expression analysis of Populus GATA genes identified the five PCs displaying tissue-specific expression, providing the clues of their biological functions. Amino acid patterns of Populus GATA motifs display well conserved manner of Populus GATA genes. The five Populus GATA genes were predicted as membrane-bound GATA TFs. Biased chromosomal distributions of GATA genes of three Populus species. Our comparative analysis approaches of the Populus GATA genes will be a cornerstone to understand various plant TF characteristics including evolutionary insights.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252181
Author(s):  
Mangi Kim ◽  
Hong Xi ◽  
Jongsun Park

GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. Due to the low cost of genome sequencing, multiple strains of specific species have been sequenced: e.g., number of plant genomes in the Plant Genome Database (http://www.plantgenome.info/) is 2,174 originated from 713 plant species. Thus, we investigated GATA TFs of 19 Arabidopsis thaliana genome-widely to understand intraspecific features of Arabidopsis GATA TFs with the pipeline of GATA database (http://gata.genefamily.info/). Numbers of GATA genes and GATA TFs of each A. thaliana genome range from 29 to 30 and from 39 to 42, respectively. Four cases of different pattern of alternative splicing forms of GATA genes among 19 A. thaliana genomes are identified. 22 of 2,195 amino acids (1.002%) from the alignment of GATA domain amino acid sequences display variations across 19 ecotype genomes. In addition, maximally four different amino acid sequences per each GATA domain identified in this study indicate that these position-specific amino acid variations may invoke intraspecific functional variations. Among 15 functionally characterized GATA genes, only five GATA genes display variations of amino acids across ecotypes of A. thaliana, implying variations of their biological roles across natural isolates of A. thaliana. PCA results from 28 characteristics of GATA genes display the four groups, same to those defined by the number of GATA genes. Topologies of bootstrapped phylogenetic trees of Arabidopsis chloroplasts and common GATA genes are mostly incongruent. Moreover, no relationship between geographical distribution and their phylogenetic relationships was found. Our results present that intraspecific variations of GATA TFs in A. thaliana are conserved and evolutionarily neutral along with 19 ecotypes, which is congruent to the fact that GATA TFs are one of the main regulators for controlling essential mechanisms, such as seed germination and hypocotyl elongation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiteng Xu ◽  
Hongfeng Wang ◽  
Zhichao Lu ◽  
Lizhu Wen ◽  
Zhiqun Gu ◽  
...  

Formation of nodules on legume roots results from symbiosis with rhizobial bacteria. Here, we identified two GATA transcription factors, MtHAN1 and MtHAN2, in Medicago truncatula, which are the homologs of HANABA TARANU (HAN) and HANABA TARANU LIKE in Arabidopsis thaliana. Our analysis revealed that MtHAN1 and MtHAN2 are expressed in roots and shoots including the root tip and nodule apex. We further show that MtHAN1 and MtHAN2 localize to the nucleus where they interact and that single and double loss-of-function mutants of MtHAN1 and MtHAN2 did not show any obvious phenotype in flower development, suggesting their role is different than their closest Arabidopsis homologues. Investigation of their symbiotic phenotypes revealed that the mthan1 mthan2 double mutant develop twice as many nodules as wild type, revealing a novel biological role for GATA transcription factors. We found that HAN1/2 transcript levels respond to nitrate treatment like their Arabidopsis counterparts. Global gene transcriptional analysis by RNA sequencing revealed different expression genes enriched for several pathways important for nodule development including flavonoid biosynthesis and phytohormones. In addition, further studies suggest that MtHAN1 and MtHAN2 are required for the expression of several nodule-specific cysteine-rich genes, which they may activate directly, and many peptidase and peptidase inhibitor genes. This work expands our knowledge of the functions of MtHANs in plants by revealing an unexpected role in legume nodulation.


2021 ◽  
Vol 85 (3) ◽  
pp. 587-599
Author(s):  
Akane Sato ◽  
Takumi Kimura ◽  
Kana Hondo ◽  
Miyuki Kawano-Kawada ◽  
Takayuki Sekito

ABSTRACT In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document