scholarly journals Ada-WHIPS: Explaining AdaBoost Classification with Applications in the Health Sciences

2020 ◽  
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R.M. Atif Azad

Abstract Background Computer Aided Diagnostics (CAD) can support medical practitioners to make critical decisions about their patients' disease conditions. Practitioners require access to the chain of reasoning behind CAD to build trust in the CAD advice and to supplement their own expertise. Yet, CAD systems might be based on black box machine learning (ML) models and high dimensional data sources (electronic health records, MRI scans, cardiotocograms, etc). These foundations make interpretation and explanation of the CAD advice very challenging. This challenge is recognised throughout the machine learning research community. eXplainable Artificial Intelligence (XAI) is emerging as one of the most important research areas of recent years because it addresses the interpretability and trust concerns of critical decision makers, including those in clinical and medical practice. Methods In this work, we focus on AdaBoost, a black box ML model that has been widely adopted in the CAD literature. We address the challenge -- to explain AdaBoost classification -- with a novel algorithm that extracts simple, logical rules from AdaBoost models. Our algorithm, Adaptive-Weighted High Importance Path Snippets (Ada-WHIPS), makes use of AdaBoost's adaptive classifier weights. Using a novel formulation, Ada-WHIPS uniquely redistributes the weights among individual decision nodes of the internal decision trees (DT) of the AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a single rule that dominated the model's decision. We compare the explanations generated by our novel approach with the state of the art in an experimental study. We evaluate the derived explanations with simple statistical tests of well-known quality measures, precision and coverage, and a novel measure stability that is better suited to the XAI setting.Results Experiments on 9 CAD-related data sets showed that Ada-WHIPS explanations consistently generalise better (mean coverage 15%-68%) than the state of the art while remaining competitive for specificity (mean precision 80%-99%). A very small trade-off in specificity is shown to guard againstover-fitting which is a known problem in the state of the art methods.Conclusions The experimental results demonstrate the benefits of using our novel algorithm for explaining CAD AdaBoost classifiers widely found in the literature. Our tightly coupled, AdaBoost-specific approach outperforms model-agnostic explanation methods and should be considered by practitioners looking for an XAI solution for this class of models.

Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

Abstract Background Computer Aided Diagnostics (CAD) can support medical practitioners to make critical decisions about their patients’ disease conditions. Practitioners require access to the chain of reasoning behind CAD to build trust in the CAD advice and to supplement their own expertise. Yet, CAD systems might be based on black box machine learning models and high dimensional data sources such as electronic health records, magnetic resonance imaging scans, cardiotocograms, etc. These foundations make interpretation and explanation of the CAD advice very challenging. This challenge is recognised throughout the machine learning research community. eXplainable Artificial Intelligence (XAI) is emerging as one of the most important research areas of recent years because it addresses the interpretability and trust concerns of critical decision makers, including those in clinical and medical practice. Methods In this work, we focus on AdaBoost, a black box model that has been widely adopted in the CAD literature. We address the challenge – to explain AdaBoost classification – with a novel algorithm that extracts simple, logical rules from AdaBoost models. Our algorithm, Adaptive-Weighted High Importance Path Snippets (Ada-WHIPS), makes use of AdaBoost’s adaptive classifier weights. Using a novel formulation, Ada-WHIPS uniquely redistributes the weights among individual decision nodes of the internal decision trees of the AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a single rule that dominated the model’s decision. We compare the explanations generated by our novel approach with the state of the art in an experimental study. We evaluate the derived explanations with simple statistical tests of well-known quality measures, precision and coverage, and a novel measure stability that is better suited to the XAI setting. Results Experiments on 9 CAD-related data sets showed that Ada-WHIPS explanations consistently generalise better (mean coverage 15%-68%) than the state of the art while remaining competitive for specificity (mean precision 80%-99%). A very small trade-off in specificity is shown to guard against over-fitting which is a known problem in the state of the art methods. Conclusions The experimental results demonstrate the benefits of using our novel algorithm for explaining CAD AdaBoost classifiers widely found in the literature. Our tightly coupled, AdaBoost-specific approach outperforms model-agnostic explanation methods and should be considered by practitioners looking for an XAI solution for this class of models.


2020 ◽  
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R.M. Atif Azad

Abstract Background Computer Aided Diagnostics (CAD) can support medical practitioners to make critical decisions about their patients' disease conditions. Practitioners require access to the chain of reasoning behind CAD to build trust in the CAD advice and to supplement their own expertise. Yet, CAD systems might be based on black box machine learning (ML) models and high dimensional data sources (electronic health records, MRI scans, cardiotocograms, etc). These foundations make interpretation and explanation of the CAD advice very challenging. This challenge is recognised throughout the machine learning research community. eXplainable Artificial Intelligence (XAI) is emerging as one of the most important research areas of recent years because it addresses the interpretability and trust concerns of critical decision makers, including those in clinical and medical practice. Methods In this work, we focus on AdaBoost, a black box ML model that has been widely adopted in the CAD literature. We address the challenge -- to explain AdaBoost classification -- with a novel algorithm that extracts simple, logical rules from AdaBoost models. Our algorithm, Adaptive-Weighted High Importance Path Snippets (Ada-WHIPS), makes use of AdaBoost's adaptive classifier weights. Using a novel formulation, Ada-WHIPS uniquely redistributes the weights among individual decision nodes of the internal decision trees (DT) of the AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a single rule that dominated the model's decision. We compare the explanations generated by our novel approach with the state of the art in an experimental study. We evaluate the derived explanations with simple statistical tests of well-known quality measures, precision and coverage, and a novel measure stability that is better suited to the XAI setting .


2020 ◽  
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R.M. Atif Azad

Abstract Background Computer Aided Diagnostics (CAD) can support medical practitioners to make critical decisions about their patients' disease conditions. Practitioners require access to the chain of reasoning behind CAD to build trust in the CAD advice and to supplement their own expertise. Yet, CAD systems might be based on black box machine learning (ML) models and high dimensional data sources (electronic health records, MRI scans, cardiotocograms, etc). These foundations make interpretation and explanation of the CAD advice very challenging. This challenge is recognised throughout the machine learning research community. eXplainable Artificial Intelligence (XAI) is emerging as one of the most important research areas of recent years because it addresses the interpretability and trust concerns of critical decision makers, including those in clinical and medical practice. Methods In this work, we focus on AdaBoost, a black box ML model that has been widely adopted in the CAD literature. We address the challenge -- to explain AdaBoost classification -- with a novel algorithm that extracts simple, logical rules from AdaBoost models. Our algorithm, Adaptive-Weighted High Importance Path Snippets (Ada-WHIPS), makes use of AdaBoost's adaptive classifier weights. Using a novel formulation, Ada-WHIPS uniquely redistributes the weights among individual decision nodes of the internal decision trees (DT) of the AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a single rule that dominated the model's decision. We compare the explanations generated by our novel approach with the state of the art in an experimental study. We evaluate the derived explanations with simple statistical tests of well-known quality measures, precision and coverage, and a novel measure stability that is better suited to the XAI setting .


Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R.M. Atif Azad

Abstract Background Computer Aided Diagnostics (CAD) can support medical practitioners to make critical decisions about their patients' disease conditions. Practitioners require access to the chain of reasoning behind CAD to build trust in the CAD advice and to supplement their own expertise. Yet, CAD systems might be based on black box machine learning (ML) models and high dimensional data sources (electronic health records, MRI scans, cardiotocograms, etc). These foundations make interpretation and explanation of the CAD advice very challenging. This challenge is recognised throughout the machine learning research community. eXplainable Artificial Intelligence (XAI) is emerging as one of the most important research areas of recent years, because it addresses the interpretability and trust concerns of medical practitioners and other critical decision makers. Method In this work, we focus on AdaBoost, a black box model that has been widely adopted in the CAD literature. We address the challenge -- to explain AdaBoost classification -- with a novel algorithm that extracts simple, logical rules from AdaBoost models. Our algorithm, \textit{Adaptive-Weighted High Importance Path Snippets} (Ada-WHIPS), makes use of AdaBoost's adaptive classifier weights; using a novel formulation, Ada-WHIPS uniquely redistributes the weights among individual decision nodes at the internals of the AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a single rule that dominated the model's decision. We compare the explanations generated by our novel approach with the state of the art in an experimental study. We evaluate the derived explanations with simple statistical tests of well-known quality measures, precision and coverage, and a novel measure \textit{stability} that is better suited to the XAI setting. Results In this paper, our experimental results demonstrate the benefits of using our novel algorithm for explaining AdaBoost classification. The simple rule-based explanations have better generalisation (mean coverage 15\%-68\%) while remaining competitive for specificity (mean precision 80\%-99\%). A very small trade-off in specificity is shown to guard against over-fitting. Conclusions This research demonstrates that interpretable, classification rule-based explanations can be generated for computer aided diagnostic tools based on AdaBoost, and that a tightly coupled, AdaBoost-specific approach can outperform model-agnostic methods.


2019 ◽  
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R.M. Atif Azad

Abstract Background Computer Aided Diagnostics (CAD) can support medical practitioners to make critical decisions about their patients' disease conditions. Practitioners require access to the chain of reasoning behind CAD to build trust in the CAD advice and to supplement their own expertise. Yet, CAD systems might be based on black box machine learning (ML) models and high dimensional data sources (electronic health records, MRI scans, cardiotocograms, etc). These foundations make interpretation and explanation of the CAD advice very challenging. This challenge is recognised throughout the machine learning research community. eXplainable Artificial Intelligence (XAI) is emerging as one of the most important research areas of recent years, because it addresses the interpretability and trust concerns of medical practitioners and other critical decision makers. Method In this work, we focus on AdaBoost, a black box model that has been widely adopted in the CAD literature. We address the challenge -- to explain AdaBoost classification -- with a novel algorithm that extracts simple, logical rules from AdaBoost models. Our algorithm, \textit{Adaptive-Weighted High Importance Path Snippets} (Ada-WHIPS), makes use of AdaBoost's adaptive classifier weights; using a novel formulation, Ada-WHIPS uniquely redistributes the weights among individual decision nodes at the internals of the AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a single rule that dominated the model's decision. We compare the explanations generated by our novel approach with the state of the art in an experimental study. We evaluate the derived explanations with simple statistical tests of well-known quality measures, precision and coverage, and a novel measure \textit{stability} that is better suited to the XAI setting. Results In this paper, our experimental results demonstrate the benefits of using our novel algorithm for explaining AdaBoost classification. The simple rule-based explanations have better generalisation (mean coverage 15\%-68\%) while remaining competitive for specificity (mean precision 80\%-99\%). A very small trade-off in specificity is shown to guard against over-fitting. Conclusions This research demonstrates that interpretable, classification rule-based explanations can be generated for computer aided diagnostic tools based on AdaBoost, and that a tightly coupled, AdaBoost-specific approach can outperform model-agnostic methods.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-49
Author(s):  
Sauptik Dhar ◽  
Junyao Guo ◽  
Jiayi (Jason) Liu ◽  
Samarth Tripathi ◽  
Unmesh Kurup ◽  
...  

The predominant paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with increasing numbers of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state of the art and for identifying open challenges and future avenues of research. However, on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc.). Hence, covering such a large number of topics in a single survey is impractical. This survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Author(s):  
Kai Guo ◽  
Zhenze Yang ◽  
Chi-Hua Yu ◽  
Markus J. Buehler

This review revisits the state of the art of research efforts on the design of mechanical materials using machine learning.


2001 ◽  
Vol 131 (1-2) ◽  
pp. 199-222 ◽  
Author(s):  
Peter A. Flach

Sign in / Sign up

Export Citation Format

Share Document