scholarly journals Genetic polymorphism of Plasmodium falciparum circumsporozoite protein (PfCSP) and mismatches against RTS, S/AS01 malaria vaccine observed on Bioko Island, Equatorial Guinea and globally

2020 ◽  
Author(s):  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Li-Yun Lin ◽  
Jiang-Tao Chen ◽  
Carlos Salas Ehapo ◽  
...  

Abstract Backgroud RTS, S/AS01 is a Plasmodium falciparum circumsporozoite protein ( PfCSP ) based anti-malaria vaccine, but various genetic polymorphisms of PfCSP among global P. falciparum population could lead to mismatch against the PfCSP - based vaccine and reduce vaccine efficacy. This study aimed to investigate the genetic polymorphisms and natural selection of PfCSP in Bioko as well as global P. falciparum population. Methods From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analyzed with 2200 global PfCSP sequences mined from MalariaGEN Pf3k Database and NCBI. Results In Bioko, the N-terminus of PfCSP showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p>0.05) and recombination occurred. The overall pattern of Bioko PfCSP gene had no obvious deviation from African mainland PfCSP (Fst=0.00878, p<0.05). The comparative analysis of Bioko and global PfCSP displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p<0.05). The global PfCSP C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 vaccine strain haplotype (H_1). Conclusions The genetic polymorphism phenomena of PfCSP were found universal. The overall vaccine efficacy might be influenced by the low proportion of vaccine-matched isolates in global parasites population. Genetic polymorphism and geographical characteristics should be considered for future improvement of RTS, S/AS01.

2020 ◽  
Author(s):  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Li-Yun Lin ◽  
Jiang-Tao Chen ◽  
Carlos Salas Ehapo ◽  
...  

Abstract Background Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various genetic polymorphisms of PfCSP among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of PfCSP in Bioko and the comparison among global P. falciparum population.Methods From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analyzed with 2200 global PfCSP sequences mined from MalariaGEN Pf3k Database and NCBI. Results In Bioko, the N-terminus of PfCSP showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p>0.05) and recombination occurred. The overall pattern of Bioko PfCSP gene had no obvious deviation from African mainland PfCSP (Fst=0.00878, p<0.05). The comparative analysis of Bioko and global PfCSP displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p<0.05). The global PfCSP C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). Conclusions The genetic polymorphism phenomena of PfCSP were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.


2020 ◽  
Author(s):  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Li-Yun Lin ◽  
Jiang-Tao Chen ◽  
Carlos Salas Ehapo ◽  
...  

Abstract Background Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population.Methods From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. Results In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p>0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst=0.00878, p<0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p<0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). Conclusions The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Li-Yun Lin ◽  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Dong-De Xie ◽  
Jiang-Tao Chen ◽  
...  

Abstract Background Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. Methods 153 blood spot samples from Bioko malaria patients were collected during 2016–2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. Results A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN–dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. Conclusions Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.


2021 ◽  
Author(s):  
Pei-Kui Yang ◽  
Xue-Yan Liang ◽  
Min Lin ◽  
Jiang-Tao Chen ◽  
Hui-Ying Huang ◽  
...  

Abstract Background: Plasmodium falciparum erythrocyte binding antigen-175 (PfEBA-175) is a candidate antigen for a blood-stage malaria vaccine, while various polymorphisms in the PfEBA-175 gene among global P. falciparum populations have prevented the development of effective vaccines based on this gene. At the same time, the dimorphism of the F- and C-fragments associated with high endemic of severe malaria has been described. This study aimed to investigate the dimorphism of PfEBA-175 on both the Bioko island and continent of Equatorial Guinea, as well as the genetic polymorphism and natural selection of global PfEBA-175.Methods: A total of 218 blood samples were collected from patients with P. falciparum malaria on Bioko Island and Bata district in 2018 and 2019. The allelic dimorphism of PfEBA-175 region II was investigated by nested polymerase chain reaction and sequencing. Polymorphic characteristics and the effect of natural selection were analyzed using MEGA 7.0, DnaSP 6.0 and PopART programs. Genetic diversity in 312 global PfEBA-175 region II sequences was also analyzed. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 and Foldx program.Results: Allelic dimorphism of PfEBA-175 was identified in the study area, and the frequency of the F-fragment was higher than that of the C-fragment in both Bioko Island and Bata district populations. Additionally, single infections (87.80%) were more frequent than mixed infections (12.20%). A total of 49 monoclonal PfEBA-175 region II sequences of Bioko Island and Bata district were sequenced successfully. PfEBA-175 of Bioko Island and Bata district isolates showed a high degree of genetic variability and heterogeneity, with π values of 0.00407 & 0.00411 and Hd values of 0.958 & 0.976 for nucleotide diversity, respectively. The values of Tajima's D of PfEBA-175 on Bata district and Bioko Island were 0.56395 and -0.27018, respectively. Globally, PfEBA-175 isolates from Asia were more diverse than those from Africa and South America, and genetic differentiation quantified by the fixation index between Asian and South American countries populations was significant (Fst>0.15, P<0.05). A total of 312 global isolates clustered in 92 haplotypes, and only one cluster contained isolates from three continents. The mutations A34T, K109E, D278Y, K301N, L305V and D329N were predicted as probably damaging by PolyPhen-2. Among them, mutations A34T, K301N and L305V led to significant increases in the free energy difference (ΔΔG>1), indicating destabilization of the protein structure.Conclusions: This study proved the dimorphism of PfEBA-175, and also demonstrated that the F-fragment was remarkably predominant in the study area. The distribution patterns and genetic diversity of PfEBA-175 in Equatorial Guinea isolates were similar to those of isolates worldwide. High levels of recombination events were observed in PfEBA-175 isolates globally, suggesting that natural selection and intragenic recombination might be the main drivers of genetic diversity in global PfEBA-175. These results have important reference value for the development of blood-stage malaria vaccine based on this antigen.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Pei-Kui Yang ◽  
Xue-Yan Liang ◽  
Min Lin ◽  
Jiang-Tao Chen ◽  
Hui-Ying Huang ◽  
...  

Abstract Background Plasmodium falciparum erythrocyte binding antigen-175 (PfEBA-175) is a candidate antigen for a blood-stage malaria vaccine, while various polymorphisms and dimorphism have prevented to development of effective vaccines based on this gene. This study aimed to investigate the dimorphism of PfEBA-175 on both the Bioko Island and continent of Equatorial Guinea, as well as the genetic polymorphism and natural selection of global PfEBA-175. Methods The allelic dimorphism of PfEBA-175 region II of 297 bloods samples from Equatorial Guinea in 2018 and 2019 were investigated by nested polymerase chain reaction and sequencing. Polymorphic characteristics and the effect of natural selection were analyzed using MEGA 7.0, DnaSP 6.0 and PopART programs. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 and Foldx program. Results Both Bioko Island and Bata district populations, the frequency of the F-fragment was higher than that of the C-fragment of PfEBA-175 gene. The PfEBA-175 of Bioko Island and Bata district isolates showed a high degree of genetic variability and heterogeneity, with π values of 0.00407 & 0.00411 and Hd values of 0.958 & 0.976 for nucleotide diversity, respectively. The values of Tajima's D of PfEBA-175 on Bata district and Bioko Island were 0.56395 and − 0.27018, respectively. Globally, PfEBA-175 isolates from Asia were more diverse than those from Africa and South America, and genetic differentiation quantified by the fixation index between Asian and South American countries populations was significant (FST > 0.15, P < 0.05). A total of 310 global isolates clustered in 92 haplotypes, and only one cluster contained isolates from three continents. The mutations A34T, K109E, D278Y, K301N, L305V and D329N were predicted as probably damaging. Conclusions This study demonstrated that the dimorphism of F-fragment PfEBA-175 was remarkably predominant in the study area. The distribution patterns and genetic diversity of PfEBA-175 in Equatorial Guinea isolates were similar another region isolates. And the levels of recombination events suggested that natural selection and intragenic recombination might be the main drivers of genetic diversity in global PfEBA-175. These results have important reference value for the development of blood-stage malaria vaccine based on this antigen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ilka Wahl ◽  
Hedda Wardemann

The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.


Sign in / Sign up

Export Citation Format

Share Document