target epitope
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Anna R Mäkelä ◽  
Hasan Uğurlu ◽  
Liina Hannula ◽  
Petja Salminen ◽  
Ravi Kant ◽  
...  

The emergence of the SARS-CoV-2 Omicron variant capable of escaping neutralizing antibodies emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Nasal epithelium is rich in the ACE2 receptor and important for SARS-CoV-2 transmission by supporting early viral replication before seeding to the lung. Intranasal administration of SARS-CoV-2 neutralizing antibodies or antibody fragments has shown encouraging potential as a protective measure in animal models. However, there remains a need for SARS-CoV-2 blocking agents that are more economical to produce in large scale, while less vulnerable to mutational variation in the neutralization epitopes of the viral Spike glycoprotein. Here we describe TriSb92, a highly manufacturable trimeric human nephrocystin SH3 domain-derived antibody mimetic targeted against a conserved region in the receptor-binding domain of the Spike. TriSb92 potently neutralizes SARS-CoV-2 and its variants of concern, including Delta and Omicron. Intranasal administration of a modest dose of TriSb92 (5 or 50 micrograms) as early as eight hours before the challenge with SARS-CoV-2 B.1.351 efficiently protected mice from infection. The target epitope of TriSb92 was defined by cryo-EM, which revealed triggering of a conformational shift in the Spike trimer rather than competition for ACE2 binding as the molecular basis of its strong inhibitory action. Our results highlight the potential of intranasal inhibitors in protecting susceptible individuals from SARS-CoV-2 infection, and describe a novel type of inhibitor that could be of use in addressing the challenge posed by the Omicron variant.


2021 ◽  
Author(s):  
Kalle Saksela ◽  
Anna Mäkelä ◽  
Hasan Ugurlu ◽  
Liina Hanula ◽  
Petja Salminen ◽  
...  

Abstract The emergence of the SARS-CoV-2 Omicron variant capable of escaping neutralizing antibodies emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Nasal epithelium is rich in the ACE2 receptor and important for SARS-CoV-2 transmission by supporting early viral replication before seeding to the lung1. Intranasal administration of SARS-CoV-2 neutralizing antibodies or antibody fragments has shown encouraging potential as a protective measure in animal models2-5. However, there remains a need for SARS-CoV-2 blocking agents that are more economical to produce in large scale, while less vulnerable to mutational variation in the neutralization epitopes of the viral Spike glycoprotein. Here we describe TriSb92, a highly manufacturable trimeric human nephrocystin SH3 domain-derived antibody mimetic targeted against a conserved region in the receptor-binding domain of the Spike. TriSb92 potently neutralizes SARS-CoV-2 and its variants of concern, including Delta and Omicron. Intranasal administration of a modest dose of TriSb92 (5 or 50 micrograms) as early as eight hours before the challenge with SARS-CoV-2 B.1.351 efficiently protected mice from infection. The target epitope of TriSb92 was defined by cryo-EM, which revealed triggering of a conformational shift in the Spike trimer rather than competition for ACE2 binding as the molecular basis of its strong inhibitory action. Our results highlight the potential of intranasal inhibitors in protecting susceptible individuals from SARS-CoV-2 infection, and describe a novel type of inhibitor that could be of use in addressing the challenge posed by the Omicron variant.


2021 ◽  
Vol 188 (11) ◽  
Author(s):  
Alberto Gómez-Caballero ◽  
Ainhoa Elejaga-Jimeno ◽  
Gontzal García del Caño ◽  
Nora Unceta ◽  
Antonio Guerreiro ◽  
...  

AbstractThe production of artificial anti-CB1 antibodies in nanoparticle format is described using the solid-phase imprinting approach. Instead of whole protein imprinting, a linear C-terminus sequence of the receptor comprising 15 amino acids (458-KVTMSVSTDTSAEAL-472) has been used as template, in accordance with the epitope imprinting approach. This sequence is located intracellularly, and it is involved in coupling to Gi/o proteins, being responsible for CB1 receptor desensitisation and internalisation. Developed molecularly imprinted materials were found to be in the nanometre scale, with a particle size of 126.4 ± 10.5 nm at pH 3 (25 ºC) and spherical shape. It was also observed that the size was sensible to temperature changes being reduced to 106.3 ± 15.2 nm at 35 °C. Lower critical solution temperature of this polymer was found to be ≈ 33.4 °C. The affinity and selectivity of the artificial antibody were assessed through dot blot and Western blot experiments. For the latter, recombinant fusion proteins GST-CB1414-472 and GST-CB1414-442 were produced to work respectively as target and negative control proteins. The control protein did not carry the target epitope for being devoid of last 30 amino acids at the C-terminus. The results demonstrated that the anti-CB1 material recognised selectively the target protein, thanks to the presence of the 15-amino acid sequence selected as epitope, which revealed that binding occurred at the C-terminus of the receptor itself. The methodology presented may pave the way for the development of novel imprinted nanomaterials for other proteins included in the superfamily of the G-protein-coupled receptors (GPCR). Graphical abstract


2021 ◽  
pp. 2097-2101
Author(s):  
Mohamed J. Saadh ◽  
Samer A. Tanash ◽  
Ammar M. Almaaytah ◽  
Issam J. Sa'adeh ◽  
Saed M. Aldalaen ◽  
...  

Background and Aim: Diagnosis of fascioliasis depends on clinical symptoms and routine laboratory tests. Recently, antibodies and circulating antigens of Fasciola were used for detecting active infections. Therefore, this study aimed to identify Fasciola gigantica antigens in the sera of infected cattle using Western blotting and enzyme-linked immunosorbent assay (ELISA) for an accurate diagnosis of cattle infected with F. gigantica. Materials and Methods: Serum samples were obtained from 108, 23, and 19 cattle infected with Fasciola gigantica, Paramphistomum cervi, and Strongylids, respectively, including 57 non-infected cattle that were used as healthy cattle for the study. Western blotting and ELISA were then used to detect circulating Fasciola antigens at 27 kDa. Results: The target epitope was detected in an F. gigantica adult-worm antigen preparation, excretory/secretory products, and serum from cattle infected with F. gigantica. However, it was absent in sera from P. cervi, Strongylids, and healthy cattle. The purified 27 kDa F. gigantica (FPA-27) antigen was also detected in cattle serum using ELISA with high degrees of sensitivity and specificity (94% and 82%, respectively), and the area under the receiver operating characteristic curve was 0.89 with a highly significant correlation of p<0.0001. Conclusion: The FPA-27 is proposed to be a promising candidate for the serodiagnosis of fascioliasis in cattle.


Author(s):  
Markus Zeitlinger ◽  
Martin Bauer ◽  
Roman Reindl-Schwaighofer ◽  
Robert M. Stoekenbroek ◽  
Gilles Lambert ◽  
...  

Abstract Purpose AT04A and AT06A are two AFFITOPE® peptide vaccine candidates being developed for the treatment of hypercholesterolemia by inducing proprotein convertase subtilisin/kexin type 9 (PCSK9)-specific antibodies. This study aimed to investigate safety, tolerability, antibody development, and reduction of low-density lipoprotein cholesterol (LDLc) following four subcutaneous immunizations. Methods This phase I, single-blind, randomized, placebo-controlled study was conducted in a total of 72 healthy subjects with a mean fasting LDLc level at baseline of 117.1 mg/dL (range 77–196 mg/dL). Each cohort enrolled 24 subjects to receive three priming immunizations at weeks 0, 4, and 8 and to receive a single booster immunization at week 60 of either AT04A, AT06A, or placebo. In addition to safety (primary objective), the antigenic peptide- and PCSK9-specific antibody response and the impact on LDLc were evaluated over a period of 90 weeks. Results The most common systemic treatment-related adverse events (AEs) reported were fatigue, headache, and myalgia in 75% of subjects in the AT06A group and 58% and 46% of subjects in the placebo and AT04A groups, respectively. Injection site reactions (ISR) representing 63% of all treatment-emergent adverse events (TEAEs), were transient and mostly of mild or moderate intensity and rarely severe (3%). Both active treatments triggered a robust, long-lasting antibody response towards the antigenic peptides used for immunization that optimally cross-reacted with the target epitope on PCSK9. In the AT04A group, a reduction in serum LDLc was observed with a mean peak reduction of 11.2% and 13.3% from baseline compared to placebo at week 20 and 70 respectively, and over the whole study period, the mean LDLc reduction for the AT04A group vs. placebo was −7.2% (95% CI [−10.4 to −3.9], P < 0.0001). In this group, PCSK9 target epitope titers above 50 were associated with clinically relevant LDLc reductions with an individual maximal decrease of 39%. Conclusions Although both AT04A and AT06 were safe and immunogenic, only AT04A demonstrated significant LDLc-lowering activity, justifying further development. Trial registration EudraCT: 2015-001719-11. ClinicalTrials.gov Identifier: NCT02508896.


Oncogene ◽  
2021 ◽  
Author(s):  
Henrique O. Duarte ◽  
Joana G. Rodrigues ◽  
Catarina Gomes ◽  
Paul J. Hensbergen ◽  
Agnes L. Hipgrave Ederveen ◽  
...  

AbstractThe clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab’s target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both α2,6- and α2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2’s ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor’s trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant α2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.


2021 ◽  
Vol 22 (6) ◽  
pp. 3166
Author(s):  
Jwala Priyadarsini Sivaccumar ◽  
Antonio Leonardi ◽  
Emanuela Iaccarino ◽  
Giusy Corvino ◽  
Luca Sanguigno ◽  
...  

Background: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb’s epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. Methods: We generated a mAb against PRAME immunizing mice with PRAME fragment 161–415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. Results: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202–212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. Conclusions: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody’s epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2020 ◽  
Author(s):  
Zishuo Yan ◽  
Hai Qi ◽  
Yueheng Lan

AbstractGerminal center (GC) is a particular biological structure produced for affinity maturation in the lymphoid follicle during the T-dependent immune response and is an important component of the humoral immune system. However, the impact of morphological features of the GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC including the appearance of two specific zones: the dark zone(DZ) and the light zone (LZ). We find that the development of light and dark zones in GC serves to maintain an effective competition among different cells and promote affinity maturation. On the other hand, by varying the GC size, a phase transition is discovered, which determines a critical GC volume for best performance in both the stochastic and the deterministic model. This critical volume is determined by the distance between the activated B Cell Receptor(BCR) and the target epitope of the antigen. The conclusion is confirmed in both the 2D and the 3D simulations and explains partly the variability in the GC size.Author summaryGerminal center (GC) is an important component of the humoral immune system, which supports antibody affinity maturation and the generation of immunity memory. However, the impact of special morphological features of the GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC. We use the mixing index of different B cells to quantitatively describe the polarization in GC. With the increase of the mixing index, the affinity of plasma cells decreases gradually, even GC might collapse. Therefore, the development of light and dark zones in GC serves to maintain effective competition among different cells and promote affinity maturation. On the other hand, by varying the GC volume, a phase transition is discovered, which determines a critical GC volume for best performance in both the stochastic and the deterministic model. This critical volume is determined by the distance between the activated B Cell Receptor (BCR) and the target epitope of antigen. The conclusion is confirmed in both the 2D and the 3D simulations and explains partly the variability in the GC size.


2020 ◽  
Vol 21 (18) ◽  
pp. 6511
Author(s):  
Kira Dobrochaeva ◽  
Nailya Khasbiullina ◽  
Nadezhda Shilova ◽  
Nadezhda Antipova ◽  
Polina Obukhova ◽  
...  

The level of human natural antibodies of immunoglobulin M isotype against LeC in patients with breast cancer is lower than in healthy women. The epitope specificity of these antibodies has been characterized using a printed glycan array and enzyme-linked immunosorbent assay (ELISA), the antibodies being isolated from donors’ blood using LeC-Sepharose (LeC is Galβ1-3GlcNAcβ). The isolated antibodies recognize the disaccharide but do not bind to glycans terminated with LeC, which implies the impossibility of binding to regular glycoproteins of non-malignant cells. The avidity (as dissociation constant value) of antibodies probed with a multivalent disaccharide is 10−9 M; the nanomolar level indicates that the concentration is sufficient for physiological binding to the cognate antigen. Testing of several breast cancer cell lines showed the strongest binding to ZR 75-1. Interestingly, only 7% of the cells were positive in a monolayer with a low density, increasing up to 96% at highest density. The enhanced interaction (instead of the expected inhibition) of antibodies with ZR 75-1 cells in the presence of Galβ1-3GlcNAcβ disaccharide, indicates that the target epitope of anti-LeC antibodies is a molecular pattern with a carbohydrate constituent rather than a glycan.


Sign in / Sign up

Export Citation Format

Share Document