scholarly journals Post-Treatment of Kennel Wastewater With Different Aeration Strategies

Author(s):  
Aline dos Reis Souza ◽  
Mateus Pimentel de Matos ◽  
Luciene Alves Batista Siniscalchi ◽  
Ronaldo Fia

Abstract The objective of this study was to evaluate the effect of the introduction of a complementary aerobic treatment composed of a submerged aerated biological filter (SABF) with a secondary clarifier (SC), followed by horizontal subsurface flow constructed wetlands (CWs), after anaerobic units, on the ability to remove pollutants in different aeration phases (Ph1, Ph2, and Ph3) at the effluent treatment station of the Parque Francisco de Assis (PFA) dog shelter. Ph1 and Ph2 had 7 and 5 hours of daily aeration, respectively, and Ph3 had intermittent aeration every 2 hours. The phases were monitored regarding the removal efficiency of organic matter, solids, nutrients (N, P), coliforms, and detection of Giardia and Cryptosporidium. It was found that post-treatment provided greater removal efficiencies and that the aeration strategy of Ph3 showed mean efficiencies of 71% for COD removal and 77% for BOD removal, being similar or statistically higher, even with less biodegradable effluent, than those of Ph1 and Ph2. The SABF and SC removed N by nitrification and denitrification, leaving a total Kjeldahl nitrogen (TKN) concentration in the effluent of 18 mg L−1. The CW showed potential for simultaneous nitrification and denitrification (SND), in addition to solid filtration. The system did not satisfactorily remove thermotolerant coliforms (ThermC) (1 ± 0 log). PCR suggested the presence of the pathogens Giardia and Cryptosporidium in all post-treatment units in Ph1 and Ph2.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
W. Khanitchaidecha ◽  
A. Nakaruk ◽  
P. Koshy ◽  
K. Futaba

Discharge of high NH4-N containing wastewater into water bodies has become a critical and serious issue due to its negative impact on water and environmental quality. In this research, the performance of three different reactors was assessed and compared with regard to the removal of NH4-N from wastewater. The highest nitrogen removal efficiency of 98.3% was found when the entrapped sludge reactor (ESR), in which the sludge was entrapped in polyethylene glycol polymer, was used. Under intermittent aeration, nitrification and denitrification occurred simultaneously in the aerobic and anaerobic periods. Moreover, internal carbon was consumed efficiently for denitrification. On the other hand, internal carbon consumption was not found to occur in the suspended sludge reactor (SSR) and the mixed sludge reactor (MSR) and this resulted in nitrogen removal efficiencies of SSR and MSR being 64.7 and 45.1%, respectively. Nitrification and denitrification were the main nitrogen removal processes in the aerobic and anaerobic periods, respectively. However, due to the absence of sufficient organic carbon, denitrification was uncompleted resulting in high NO3-N contents in the effluent.


2013 ◽  
Vol 39 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Katarzyna Bernat

Abstract In this study, the dependence between volumetric exchange rate (n) in an SBR (Sequencing Batch Reactor) with a modified cycle and simultaneous nitrification and denitrification (SND) efficiency during the treatment of anaerobic sludge digester supernatant was determined. In the SBR cycle alternating three aeration phases (with limited dissolved oxygen (DO) concentration up to 0.7 mg O2/L) and two mixing phases were applied. The lengths of each aeration and mixing phases were 4 and 5.5 h, respectively. Independently of n, a total removal of ammonium was achieved. However, at n = 0.1 d-1 and n = 0.3 d-1 nitrates were the main product of nitrification, while at n = 0.5 d-1, both nitrates and nitrites occurred in the effluent. Under these operational conditions, despite low COD/N (ca. 4) ratio in the influent, denitrification in activated sludge was observed. A higher denitrification efficiency at n = 0.5 d-1 (51.3%) than at n = 0.1 d-1 (7.8%) indicated that n was a crucial factor influencing SND via nitrite and nitrate in the SBR with a low oxygen concentration in aeration phases.


2001 ◽  
Vol 43 (1) ◽  
pp. 269-276 ◽  
Author(s):  
N. Puznava ◽  
M. Payraudeau ◽  
D. Thornberg

The aim of this article is to present a new biological aerated filter (BAF) for nitrogen removal based on simultaneous nitrification and denitrification. Contrary to the systems which integrate both an aerated and a non-aerated zone to allow complete nitrogen removal in one compact or two different units (pre-denitrification and nitrification), this upflow BAF system is based on the principle of simultaneous nitrification and denitrification since the filter is completely aerated. The denitrification process is possible due to the diffusion effect which dominates biofilm processes. The real time aeration control allows us to maintain a low dissolved oxygen value (0.5 to 3 mg O2/l). In this case, the biofilm will not be fully (or less) penetrated with oxygen and denitrification will be carried out in a large part of the biofilm. Therefore, nitrification and denitrification is running simultaneously in different depths of the biofilm. By using 50% less air this BAF gave the same results (less than 20mg TN/l) on pilot plant as a classical nitrification and denitrification BAF (Toettrup et al., 1994). Less recirculation was necessary to achieve the same denitrification.


Sign in / Sign up

Export Citation Format

Share Document