scholarly journals The Dynamic Lattice Method - Vibrations and Wave Propagation in Discontinuous and Heterogeneous Media

Author(s):  
Amir Shoarian Sattari ◽  
Zarghaam H. Rizvi ◽  
Hendrawan D. B. Aji ◽  
Frank Wuttke

Abstract The development of a new dynamic lattice element method (dynamicLEM) as well as its application in the simulation of wave propagation in discontinuous and heterogeneous media is the focus of this research paper. The conventional static lattice models are efficient numerical methods to simulate crack initiation and propagation in cemented geomaterials. The advantage of the LEM and the developed dynamic solution, such as simulation of arbitrary crack initiation and propagation, illustration and simulation of existing inherent material heterogeneity as well as stress redistribution upon crack opening, opens a new engineering field and tool for material analysis. To realize the time dependency of the dynamic LEM, the governing Newton's second law is solved while using the Newmark-β method and implementing the non-linear Newton-Raphson Jacobian. The method validation is done according to the results of a boundary element method (BEM) in the plane P-SV-wave propagation within a plane strain domain. Further validation tests comparing the generated wave types, simulation and study of crack discontinuities as well as inherent heterogeneities in the geomaterials are conducted to illustrate the accurate applicability of the new dynamic lattice method. The results indicate that with increasing heterogeneity within the material, the wave field becomes significantly scattered and further analysis of wave fields according to the wavelength/heterogeneity ratio become indispensable. Therefore, in a heterogeneous medium, the application of continuum methods in relation to structural health monitoring should be precisely investigated and improved. The developed dynamic lattice element method is an ideal simulation tool to consider particle scale irregularities, crack distributions and inherent material heterogeneities and can be easily implemented in various engineering applications.

Author(s):  
Jeroen Van Wittenberghe ◽  
Patrick De Baets ◽  
Wim De Waele

Threaded couplings are used in various applications to connect steel pipes. To maintain a secure connection, such couplings are preloaded and during service additional dynamic loads can act on the connections. The coupling’s threads act as stress raisers, initiating fatigue cracks, which can cause the connection to fail in time. Accurate knowledge of the fatigue behavior, taking into account crack initiation and propagation is necessary to understand the fatigue mechanisms involved. In this study, the fatigue behavior of tapered couplings with NPT threads is studied. This is done by analyzing the results of an experimental four-point bending test. The fatigue crack propagation is monitored using an optical dynamic 3D displacement measurement device and LVDTs to measure the crack opening. At certain times during the test, the load ratio is changed to apply a number of beach marking cycles. This way a fine line is marked in the fracture surface. These marked crack shapes are used as input for a finite element model. The measured deflection and crack opening are compared to the results of the numerical simulations. Using this methodology a distinction is made between fatigue crack initiation and propagation. By analyzing the fracture surface it was observed that once the crack is initiated, it propagates over a wide segment of the pipe’s circumference and subsequently rapidly penetrates the wall of the pipe. The observed crack growth rates are confirmed by a fracture mechanics analysis. Since the appearing long shallow crack is difficult to detect at an early stage the importance is demonstrated of accurate knowledge of the fatigue behavior of threaded connections in order to define acceptable flaw sizes and inspection intervals.


2013 ◽  
Vol 331 ◽  
pp. 129-132 ◽  
Author(s):  
Jing Xin Su ◽  
Zhao Hui Ji ◽  
Zhi Yong Han ◽  
Hua Zhang

CoNiCrAlY bond coat (BC) and top ceramic coating (TCC) was fabricated on the GH99 super alloy by high velocity oxyfuel spray (HVOF) and air plasma spray (APS), respectively. Thermal cycling treatment was applied to the thermal barrier coatings (TBCs). The cross-sectional images of crack initiation and propagation of TBCs after treatment were investigated by scanning electron micrograph (SEM), meanwhile crack initiation and propagation in TBCs were analyzed based upon ABAQUS software using extended finite element method (XFEM). The results show that, crack initiation and propagation can be easily traced via microscopy at the interface areas in TBCs; after thermal cycling treatments, the crack associated with the TCC/TGO interface morphology initiates at interface peak area and propagates along TCC/TGO interface with thermal cycles; the interface roughness affects the crack magnitude in length and width obviously, the rougher the morphology, the bigger the crack is; the XFEM is a novel and effective method to well predict the crack initiation and calculate the crack propagation, and simulation and experimental results fit well.


2017 ◽  
Vol 23 (4) ◽  
pp. 330
Author(s):  
Feliks Stachowicz ◽  
Mojtaba Biglar ◽  
Magdalena Gromada ◽  
Tomasz Trzepiecinski

<p> <strong><span style="font-family: Times New Roman; font-size: small;">Abstract </span></strong></p><p><span style="font-family: Times New Roman;">The subject of this paper is the analysis of crack initiation and propagation in barium titanate ceramic using boundary element method. In micro-mechanical analyses, it is very important to have knowledge about the real microstructure of material. The barium titanate pellet was prepared  using a solid-state technique. The boundary element method is used in order to be combined with three different grain boundary formulations for the investigation of micro-mechanics as well as crack initiation and propagation in piezoelectric actuator. In order to develop a numerical programming algorithm, suitable models of polycrystalline aggregate and representative volume elements have been prepared for boundary element analysis. </span></p>


Sign in / Sign up

Export Citation Format

Share Document