brittle rocks
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 60)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Fengchang Bu ◽  
Lei Xue ◽  
Mengyang Zhai ◽  
Xiaolin Huang ◽  
Jinyu Dong ◽  
...  

AbstractAcoustic emission (AE) characterization is an effective technique to indirectly capture the failure process of quasi brittle rock. In previous studies, both experiments and numerical simulations were adopted to investigate the AE characteristics of rocks. However, as the most popular numerical model, the moment tensor model (MTM) cannot be constrained by the experimental result because there is a gap between MTM and experiments in principle, signal processing and energy analysis. In this paper, we developed a particle-velocity-based model (PVBM) that enabled direct monitoring and analysis of the particle velocity in the numerical model and had good robustness. The PVBM imitated the actual experiment and could fill in gaps between the experiment and MTM. AE experiments of marine shale under uniaxial compression were carried out, and the results were simulated by MTM. In general, the variation trend of the experimental result could be presented by MTM. Nevertheless, the magnitudes of AE parameters by MTM presented notable differences of more than several orders of magnitude compared with those by the experiment. We sequentially used PVBM as a proxy to analyse these discrepancies and systematically evaluate the AE characterization of rocks from the experiment to numerical simulation, considering the influence of wave reflection, energy geometrical diffusion, viscous attenuation, particle size and progressive deterioration of rock material. The combination of MTM and PVBM could reasonably and accurately acquire AE characteristics of the actual AE experiment of rocks by making full use of their respective advantages.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xunjian Hu ◽  
Lina Luo ◽  
Gang Lei ◽  
Xiaonan Gong ◽  
Panpan Guo ◽  
...  

The existence of flaws in brittle rocks or rock-like materials has an obvious influence on the material mechanical properties and cracking behavior of civil engineering projects. In this work, the two-dimensional particle flow code PFC2D was used to study the deformation and strength properties, failure processes, and acoustic emission (AE) characteristics of mudstone with a single preexisting flaw. First, the procedure to construct a parallel bond model is introduced. The Weibull distribution is used to reflect the mechanical heterogeneity of rocks. Then, the microscopic parameters used in PFC2D are calibrated to the macroproperties of mudstone obtained from laboratory tests under the uniaxial compression. The results indicate that the increases of the flaw inclination lead to the increasing uniaxial compressive strength and elastic modulus. In terms of microcrack evolution, the initiation, propagation, and coalescence of microcracks are closely related to the force chain. Specifically, an “X” shaped tension force chain concentrated area around the preexisting flaw is founded, which is the most prone area for microcracks to initiate. With an increase in flaw inclination, the b value of AE also shows an increasing trend. By incorporating the AE event numbers into a damage variable, this paper derives a constitutive model, which is verified by numerical results on brittle rocks with a single preexisting flaw under uniaxial compression.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Yuan ◽  
Qizhi Zhu ◽  
Wanlu Zhang ◽  
Jin Zhang ◽  
Lunyang Zhao

A micromechanical anisotropic damage model with a non-associated plastic flow rule is developed for describing the true triaxial behaviors of brittle rocks. We combine the Eshelby’s solution to the inclusion problem with the framework of irreversible thermodynamics. The main dissipative mechanisms of inelastic deformation due to the frictional sliding and damage by microcrack propagation are strongly coupled to each other. A Coulomb-type friction criterion is formulated in terms of the local stress applied onto the microcracks as the yielding function. The back-stress term contained in this local stress plays a critical role in describing the material’s hardening/softening behaviors. With a non-associated flow rule, a potential function is involved. Some analytical analysis of the non-associated micromechanical anisotropic damage model are conducted, which are useful for the model parameters calibration. The proposed model is used to simulate the laboratory tests on Westerly granite under true triaxial stresses. Comparing the numerical simulation results provided by the models with associated/non-associated plastic flow rule and experimental results, it is clear that the proposed non-associated model gives a better prediction than the previous associated model.


Author(s):  
Kamel Fahmi Bou-Hamdan ◽  
Azza Hashim Abbas

AbstractIn the oil and gas industry, hydraulic fracturing (HF) is a common application to create additional permeability in unconventional reservoirs. Using proppant in HF requires understanding the interactions with rocks such as shale, and the mechanical aspects of their contacts. However, these studies are limited in literature and inconclusive. Therefore, the current research aims to apply a novel method, mainly ultrasound, to investigate the proppant embedment phenomena for different rocks. The study used proppant materials that are susceptible to fractures (glass) and others that are hard and do not break (steel). Additionally, the materials used to represent brittle shale rocks (polycarbonate and phenolic) were based on the ratio of elastic modulus to yield strength (E/Y). A combination of experimental and numerical modeling was used to investigate the contact stresses, deformation, and vertical displacement. The results showed that the relation between the stresses and ultrasound reflection coefficient follows a power-law equation, which validated the method application. From the experiments, plastic deformation was encountered in phenolic surfaces despite the corresponding contacted material. Also, the phenolic stresses showed a difference compared to polycarbonate for both high and low loads, which is explained by the high attenuation coefficient of phenolic that limited the quality of the reflected signal. The extent of vertical displacements surrounding the contact zone was greater for the polycarbonate materials due to the lower E/Y, while the phenolic material was limited to smaller areas not exceeding 50% of polycarbonate for all tested load conditions. Therefore, the study confirms that part of the contact energy in phenolic material was dissipated in the plastic deformation, indicating greater proppant embedment, and leading to a loss in fracture conductivity for rocks of higher E/Y.


2021 ◽  
Vol 139 ◽  
pp. 104391
Author(s):  
Peng-Fei Qu ◽  
Qi-Zhi Zhu ◽  
Lun-Yang Zhao ◽  
Ya-Jun Cao
Keyword(s):  

Author(s):  
Matthew J. Brain ◽  
Sebastian Moya ◽  
Mark E. Kincey ◽  
Neil Tunstall ◽  
David N. Petley ◽  
...  

2021 ◽  
Vol 2011 (1) ◽  
pp. 012014
Author(s):  
Yetong Xie ◽  
Jing Li ◽  
Ziyi Song ◽  
Chongzhi Wang ◽  
Kaiyu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document