scholarly journals The Maxwell crossover and the van der Waals equation of state

Author(s):  
Hongqin Liu

Abstract The well-known Maxwell construction1 (the equal-area rule, EAR) was devised for vapor liquid equilibrium (VLE) calculation with the van der Waals (vdW) equation of state (EoS)2. The EAR generates an intermediate volume between the saturated liquid and vapor volumes. The trajectory of the intermediate volume over the coexistence region is defined here as the Maxwell crossover, denoted as the M-line, which is independent of EoS. For the vdW or any cubic3 EoS, the intermediate volume corresponds to the “unphysical” root, while other two corresponding to the saturated volumes of vapor and liquid phases, respectively. Due to it’s “unphysical” nature, the intermediate volume has always been discarded. Here we show that the M-line, which turns out to be strictly related to the diameter4 of the coexistence curve, holds the key to solving several major issues. Traditionally the coexistence curve with two branches is considered as the extension of the Widom line5,6-9. This assertion causes an inconsistency in three planes of temperature, pressure and volume. It is found that the M-line is the natural extension of the Widom line into the vapor-liquid coexistence region. As a result, the united single line coherently divides the entire phase space, including the coexistence and supercritical fluid regions, into gas-like and liquid-like regimes in all the planes. Moreover, along the M-line the vdW EoS finds a new perspective to access the second-order transition in a way better aligning with observations and modern theory10. Lastly, by using the feature of the M-line, we are able to derive a highly accurate and analytical proximate solution to the VLE problem with the vdW EoS.

2021 ◽  
Vol 9 ◽  
Author(s):  
J. S. Yu ◽  
X. Zhou ◽  
J. F. Chen ◽  
W. K. Du ◽  
X. Wang ◽  
...  

Differential geometry is a powerful tool to analyze the vapor–liquid critical point on the surface of the thermodynamic equation of state. The existence of usual condition of the critical point (∂p/∂V)T=0 requires the isothermal process, but the universality of the critical point is its independence of whatever process is taken, and so we can assume (∂p/∂T)V=0. The distinction between the critical point and other points on the surface leads us to further assume that the critical point is geometrically represented by zero Gaussian curvature. A slight extension of the van der Waals equation of state is to letting the two parameters a and b in it vary with temperature, which then satisfies both assumptions and reproduces its usual form when the temperature is approximately the critical one.


Sign in / Sign up

Export Citation Format

Share Document