scholarly journals Rhizobium lacunae sp. nov., Isolated From a Freshwater Pond

Author(s):  
Wen-Ming Chen ◽  
Che-Chia Yang ◽  
Chiu-Chung Young ◽  
Shih-Yao Lin ◽  
Shih-Yi Sheu

Abstract Bacterial strain designated CSW-27T was isolated from a freshwater pond in Taiwan. Cells were Gram-stain-negative, aerobic, oxidase-positive, catalase-negative, rod-shaped and motile by flagella. Strain CSW-27T grew at 20-40 oC (optimum, 30-37 oC), at pH 5-9 (optimum, pH 6-7) and in the presence of 0-4% NaCl (optimum, 0%). Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set revealed that strain CSW-27T was affiliated with species in the genus Rhizobium. Analysis of 16S rRNA gene sequences showed that strain CSW-27T had the highest similarity to Rhizobium straminoryzae CC-LY845T (98.5%) followed by Rhizobium capsici CC-SKC2T (96.9%). The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain CSW-27T and the closely related Rhizobium species were 73.4-86.5, 66.0-88.8 and 13.3-22.1%, respectively. The principal fatty acid was summed feature 8 (C18:1ω7c and/or C18:1ω6c). The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, one uncharacterized aminophospholipid, three uncharacterized aminolipids and two uncharacterized lipids. The predominant polyamine was spermidine. The major isoprenoid quinone was Q-10. Genomic DNA G+C content of strain CSW-27T was 63.3%. These polyphasic taxonomic data indicited that strain CSW-27T should be considered as representing a novel species in the genus Rhizobium, for which the name Rhizobium lacunae sp. nov. is proposed with strain CSW-27T (=BCRC 81244T =LMG 31684T) as the type strain.

2021 ◽  
Author(s):  
Wen-Ming Chen ◽  
Ting-Hsuan Chang ◽  
Der-Shyan Sheu ◽  
Li-Cheng Jheng ◽  
Shih-Yi Sheu

Abstract Strain CCP-1T, isolated from a freshwater pond in Taiwan, is characterized using a polyphasic taxonomy approach. Cells of strain CCP-1T are Gram-stain-negative, aerobic, non-motile, rod-shaped and form dark red colored colonies. Growth occurs at 20–40 oC, at pH 6.5-9 and with 0-0.5% NaCl. Strain CCP-1T contains bacteriochlorophyll a, and shows optimum growth under anaerobic condition by photoheterotrophy, but not by photoautotrophy. 16S rRNA gene sequence similarity indicates that strain CCP-1T is closely related to species within the genus Rhodobacter (93.9–96.2% sequence similarity), Haematobacter (96.3%) and Xinfangfangia (95.5–96.2%). Phylogenetic analyses based on 16S rRNA gene sequences and based on up-to-date bacterial core gene set (92 protein clusters) reveal that strain CCP-1T is affiliated with species in the genus Rhodobacter. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization identity between strain CCP-1T and Rhodobacter species are 71.3–76.3%, 70.4–77.9% and 21.4–23.2%, respectively, supporting that strain CCP-1T is a novel species of the genus Rhodobacter. The DNA G + C content is 66.2%. The predominant fatty acid is C18:1ω7c and the major isoprenoid quinone is Q-10. The polar lipids have phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized aminophospholipids and two uncharacterized phospholipids. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain CCP-1T should represent a novel species of the genus Rhodobacter, for which the name Rhodobacter ruber sp. nov. is proposed. The type strain is CCP-1T (= BCRC 81189T = LMG 31335T).


2021 ◽  
Author(s):  
Wen-Ming Chen ◽  
Ya-Xiu You ◽  
Chiu-Chung Young ◽  
Shih-Yao Lin ◽  
Shih-Yi Sheu

Abstract A bacterial strain designated KDG-16T is isolated from a freshwater waterfall in Taiwan and characterized to determine its taxonomic affiliation. Cells of strain KDG-16T are Gram-stain-negative, strictly aerobic, motile by gliding, rod-shaped and form light yellow colonies. Optimal growth occurs at 20-25 oC, pH 6-7, and with 0% NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set reveal that strain KDG-16T is affiliated with species in the genus Flavobacterium. Analysis of 16S rRNA gene sequences shows that strain KDG-16T shares the highest similarity with Flavobacterium terrigena DSM 17934T (97.7%). The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain KDG-16T and the closely related Flavobacterium species are below the cut-off values of 95-96, 90 and 70%, respectively, used for species demarcation. Strain KDG-16T contains iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH as the predominant fatty acids. The polar lipid profile consists of phosphatidylethanolamine, one uncharacterized aminophospholipid, one uncharacterized phospholipid, two uncharacterized aminolipids and two uncharacterized lipids. The major polyamine is homospermidine. The major isoprenoid quinone is MK-6. Genomic DNA G+C content of strain KDG-16T is 31.6%. Based on the polyphasic taxonomic data obtained, strain KDG-16T is considered to represent a novel species in the genus Flavobacterium, for which the name Flavobacterium difficile sp. nov. is proposed. The type strain is KDG-16T (=BCRC 81194T =LMG 31332T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1906-1911 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Yu-Wen Shiau ◽  
Yan-Ting Wei ◽  
Wen-Ming Chen

To investigate the biodiversity of bacteria in the spring water of the Chengcing Lake Park in Taiwan, a Gram-stain-negative, rod-shaped, non-motile, non-spore-forming and aerobic bacterial strain, designated strain Chen16-4T, was isolated and characterized in a taxonomic study using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that the closest relatives of strain Chen16-4T were Sphingobium amiense YTT, Sphingobium yanoikuyae GIFU 9882T and Sphingobium scionense WP01T, with sequence similarities of 97.6, 97.1 and 97.0 %, respectively. A phylogenetic tree obtained with 16S rRNA gene sequences indicated that strain Chen16-4T and these three closest relatives formed an independent phylogenetic clade within the genus Sphingobium . The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of C18 : 1ω7c in the cellular fatty acid profile and the DNA G+C content also supported affiliation of the isolate to the genus Sphingobium . The DNA–DNA relatedness of strain Chen16-4T with respect to recognized species of the genus Sphingobium was less than 70 %. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Chen16-4T represents a novel species in the genus Sphingobium , for which the name Sphingobium fontiphilum sp. nov. is proposed. The type strain is Chen16-4T ( = BCRC 80308T = LMG 26342T = KCTC 23559T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1217-1221 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Tae-Kwang Oh

Two Gram-negative, non-spore-forming, motile and helical-shaped bacterial strains, K92T and K93, were isolated from sludge from a dye works in Korea, and their taxonomic positions were investigated by means of a polyphasic approach. Strains K92T and K93 grew optimally at 37 °C and pH 7.0–8.0 in the presence of 0.5 % (w/v) NaCl. They contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified amino-group-containing lipids that were ninhydrin-positive. Their DNA G+C contents were 70.0 mol%. The 16S rRNA gene sequences of K92T and K93 showed no differences, and the two strains had a mean DNA–DNA relatedness of 93 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains K92T and K93 formed a distinct evolutionary lineage within the Alphaproteobacteria. The 16S rRNA gene sequences of strains K92T and K93 exhibited similarity values of less than 91.5 % with respect to the 16S rRNA gene sequences of other members of the Alphaproteobacteria. The two strains were distinguishable from phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strains K92T and K93 represent a novel genus and species, for which the name Caenispirillum bisanense gen. nov., sp. nov. is proposed. The type strain of Caenispirillum bisanense is K92T (=KCTC 12839T=JCM 14346T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1251-1255 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-5T, was isolated from seawater off Dokdo, Korea, and subjected to a polyphasic taxonomic study. It grew optimally at 25–28 °C and in the presence of 2 % (w/v) NaCl. Strain DSW-5T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected were phosphatidylethanolamine, three unidentified phospholipids and an amino-group-containing lipid. The DNA G+C content was 30.0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-5T was most closely related to the genus Polaribacter. Similarity values between the 16S rRNA gene sequences of strain DSW-5T and the type strains of recognized Polaribacter species were in the range 96.2–96.8 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DSW-5T (=KCTC 12392T=DSM 17204T) was classified in the genus Polaribacter as the type strain of a novel species, for which the name Polaribacter dokdonensis sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming bacterial strain, DS-44T, was isolated from soil from Dokdo in Korea, and its taxonomic position was investigated by using a polyphasic approach. It grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Strain DS-44T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 49·0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-44T belongs to the genus Algoriphagus of the phylum Bacteroidetes. Similarity values between the 16S rRNA gene sequences of strain DS-44T and those of the type strains of recognized Algoriphagus species were in the range 93·8–95·7 %, making it possible to categorize strain DS-44T as a species that is separate from previously described Algoriphagus species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DS-44T (=KCTC 12545T=CIP 108837T) was classified in the genus Algoriphagus as the type strain of a novel species, for which the name Algoriphagus terrigena sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2259-2261 ◽  
Author(s):  
Jongsik Chun ◽  
Jae-Hak Lee ◽  
Yoonyoung Jung ◽  
Myungjin Kim ◽  
Seil Kim ◽  
...  

16S rRNA gene sequences have been widely used for the identification of prokaryotes. However, the flood of sequences of non-type strains and the lack of a peer-reviewed database for 16S rRNA gene sequences of type strains have made routine identification of isolates difficult and labour-intensive. In the present study, we generated a database containing 16S rRNA gene sequences of all prokaryotic type strains. In addition, a web-based tool, named EzTaxon, for analysis of 16S rRNA gene sequences was constructed to achieve identification of isolates based on pairwise nucleotide similarity values and phylogenetic inference methods. The system developed provides users with a similarity-based search, multiple sequence alignment and various phylogenetic analyses. All of these functions together with the 16S rRNA gene sequence database of type strains can be successfully used for automated and reliable identification of prokaryotic isolates. The EzTaxon server is freely accessible over the Internet at http://www.eztaxon.org/


2000 ◽  
Vol 66 (10) ◽  
pp. 4222-4229 ◽  
Author(s):  
Scott R. Miller ◽  
Richard W. Castenholz

ABSTRACT The extension of ecological tolerance limits may be an important mechanism by which microorganisms adapt to novel environments, but it may come at the evolutionary cost of reduced performance under ancestral conditions. We combined a comparative physiological approach with phylogenetic analyses to study the evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Among the 20 laboratory clones of Synechococcus isolated from collections made along an Oregon hot spring thermal gradient, four different 16S rRNA gene sequences were identified. Phylogenies constructed by using the sequence data indicated that the clones were polyphyletic but that three of the four sequence groups formed a clade. Differences in thermotolerance were observed for clones with different 16S rRNA gene sequences, and comparison of these physiological differences within a phylogenetic framework provided evidence that more thermotolerant lineages of Synechococcus evolved from less thermotolerant ancestors. The extension of the thermal limit in these bacteria was correlated with a reduction in the breadth of the temperature range for growth, which provides evidence that enhanced thermotolerance has come at the evolutionary cost of increased thermal specialization. This study illustrates the utility of using phylogenetic comparative methods to investigate how evolutionary processes have shaped historical patterns of ecological diversification in microorganisms.


2005 ◽  
Vol 55 (5) ◽  
pp. 2051-2055 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Choong-Hwan Lee ◽  
Tae-Kwang Oh

Two Gram-negative, non-spore-forming, slightly halophilic gliding bacterial strains, DSW-8T and DSW-9, were isolated from sea water off a Korean island, Dokdo, of the East Sea, Korea, and their taxonomic position was investigated by a polyphasic study. The two strains grew optimally at 30 °C and in the presence of 2–3 % (w/v) NaCl. Strains DSW-8T and DSW-9 were characterized chemotaxonomically as containing MK-6 as the predominant menaquinone and iso-C17 : 0 3-OH, iso-C15 : 0 and iso-C15 : 1 as the major fatty acids. Major polar lipids were phosphatidylethanolamine, two unidentified phospholipids, an unidentified glycolipid and an amino group-containing lipid that was ninhydrin-positive. Their DNA G+C contents were 36·1 and 35·9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains DSW-8T and DSW-9 fell within the genus Maribacter of the family Flavobacteriaceae. Strains DSW-8T and DSW-9 exhibited no difference in their 16S rRNA gene sequences and possessed a mean DNA–DNA relatedness level of 89 %. Strains DSW-8T and DSW-9 exhibited 16S rRNA gene sequence similarity levels of 96·9–98·0 % to the type strains of the four recognized Maribacter species, but their low level of DNA–DNA relatedness with these species demonstrated that they constitute a distinct Maribacter species. On the basis of phenotypic and phylogenetic data and genetic distinctiveness, strains DSW-8T (=KCTC 12393T=DSM 17201T) and DSW-9 were classified in the genus Maribacter as members of a novel species, for which the name Maribacter dokdonensis sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2284-2288 ◽  
Author(s):  
Seo-Youn Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

Two Gram-negative, milky-white-pigmented, motile, slightly curved rod-shaped bacterial isolates, UMS-37T and UMS-40, were isolated from rhizosphere soil of wild edible greens cultivated on Ulleung island, Korea, and their taxonomic positions were investigated by a polyphasic approach. They grew optimally at 25–30 °C and contained Q-8 as the predominant ubiquinone. The major cellular fatty acids (>10 % of total fatty acids) were C16 : 0, cyclo C17 : 0 and C16 : 1 ω7c and/oriso-C15 : 0 2-OH. The DNA G+C contents of the two isolates were 59.8 and 60.0 mol%. Isolates UMS-37T and UMS-40 exhibited no difference in their 16S rRNA gene sequences and possessed a mean DNA–DNA relatedness level of 94 %; they exhibited 16S rRNA gene sequence similarity levels of 96.8–98.2 % to the type strains of recognized Herbaspirillum species. Phylogenetic analyses based on 16S rRNA gene sequences showed that isolates UMS-37T and UMS-40 formed a distinct phylogenetic lineage within the genus Herbaspirillum. DNA–DNA relatedness levels between isolates UMS-37T and UMS-40 and the type strains of some phylogenetically related Herbaspirillum species were in the range 3–56 %. On the basis of differences in phenotypic properties and phylogenetic distinctiveness and genomic data, isolates UMS-37T and UMS-40 were classified in the genus Herbaspirillum within a novel species, for which the name Herbaspirillum rhizosphaerae sp. nov. is proposed, with the type strain UMS-37T (=KCTC 12558T =CIP 108917T).


Sign in / Sign up

Export Citation Format

Share Document