ecological diversification
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 47)

H-INDEX

35
(FIVE YEARS 3)

mSystems ◽  
2022 ◽  
Author(s):  
Trinity L. Hamilton ◽  
Jeff Havig

Hot spring cyanobacteria have long been model systems for examining ecological diversification as well as characterizing microbial adaptation and evolution to extreme environments. These studies have reported cyanobacterial diversification in hot spring outflow channels that can be defined by distinct temperature ranges.


Genetics ◽  
2021 ◽  
Author(s):  
Shuai Sun ◽  
Tobias Theska ◽  
Hanh Witte ◽  
Erik J Ragsdale ◽  
Ralf J Sommer

Abstract Nematodes show an extraordinary diversity of mouth structures and strikingly different feeding strategies, which has enabled an invasion of all ecosystems. However, nearly nothing is known about the structural and molecular architecture of the nematode mouth (stoma). Pristionchus pacificus is an intensively studied nematode that exhibits unique life history traits, including predation, teeth-like denticle formation, and mouth-form plasticity. Here, we used a large-scale genetic screen to identify genes involved in mouth formation. We identified Ppa-dpy-6 to encode a Mucin-type hydrogel-forming protein that is macroscopically involved in the specification of the cheilostom, the anterior part of the mouth. We used a recently developed protocol for geometric morphometrics of miniature animals to characterize these defects further and found additional defects that affect mouth form, shape, and size resulting in an overall malformation of the mouth. Additionally, Ppa-dpy-6 is shorter than wild-type with a typical Dumpy phenotype, indicating a role in the formation of the external cuticle. This concomitant phenotype of the cheilostom and cuticle provides the first molecular support for the continuity of these structures and for the separation of the cheilostom from the rest of the stoma. In C. elegans, dpy-6 was an early mapping mutant but its molecular identity was only determined during genome-wide RNAi screens and not further investigated. Strikingly, geometric morphometric analysis revealed previously unrecognized cheilostom and gymnostom defects in Cel-dpy-6 mutants. Thus, the Mucin-type protein DPY-6 represents to the best of our knowledge, the first protein involved in nematode mouth formation with a conserved role in cuticle deposition. This study opens new research avenues to characterize the molecular composition of the nematode mouth, which is associated with extreme ecological diversification.


2021 ◽  
Author(s):  
Trinity L. Hamilton ◽  
Jeff Havig

AbstractGeographic isolation can be a main driver of microbial evolution in hot springs while temperature plays a role on local scales. For example, cyanobacteria, particularly high temperature Synechococcus spp., have undergone ecological diversification along temperature gradients in hot spring outflow channels. While water flow, and thus temperature, is largely stable in many hot springs, flow can vary in geysing/eruptive hot springs resulting in large temperature fluctuations (sometimes more than 40°C). However, the role of large temperature fluctuations in driving diversification of cyanobacteria in eruptive hot springs has not been explored. Here, we examined phototroph community composition and potential photoautotrophic activity in two alkaline eruptive hot springs with similar geochemistry in the Lower Geyser Basin in Yellowstone National Park, WY. We observed distinct cyanobacterial amplicon sequencing variants (ASVs) consistent with allopatry and levels of light-dependent inorganic carbon uptake rates similar to other hot springs, despite large temperature fluctuations. Our data suggests median temperatures may drive phototroph fitness in eruptive hot springs while future studies are necessary to determine the evolutionary consequences of thriving under continuously fluctuating temperatures. We propose that large temperature swings in eruptive hot springs offer unique environments to examine the role of allopatry vs. physical and chemical characteristics of ecosystems in driving cyanobacteria evolution and add to the debate regarding the ecology of thermal adaptation and the potential for narrowing niche breadth with increasing temperature.ImportanceHot spring cyanobacteria have long been model systems for examining ecological diversification as well as characterizing microbial adaptation and evolution to extreme environments. These studies have reported cyanobacterial diversification in hot spring outflow channels that can be defined by distinct temperature ranges. Our study builds on these previous studies by examining cyanobacteria in geysing hot springs. Geysing hot springs result in outflow channel that experience regular and large temperature fluctuations. While community composition is similar between geysing and nongeysing hot spring outflow channels, our data suggests median, rather than high temperature, drive the fitness of cyanobacteria in geysing hot springs. We propose that large temperature swings may result in patterns of ecological diversification that are distinct from more stable outflows.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Melissa R. Ingala ◽  
Nancy B. Simmons ◽  
Miranda Dunbar ◽  
Claudia Wultsch ◽  
Konstantinos Krampis ◽  
...  

Abstract Background Animals evolved in a microbial world, and their gut microbial symbionts have played a role in their ecological diversification. While many recent studies report patterns of phylosymbiosis between hosts and their gut bacteria, fewer studies examine the potentially adaptive functional contributions of these microbes to the dietary habits of their hosts. In this study, we examined predicted metabolic pathways in the gut bacteria of more than 500 individual bats belonging to 60 species and compare the enrichment of these functions across hosts with distinct dietary ecologies. Results We found that predicted microbiome functions were differentially enriched across hosts with different diets. Using a machine-learning approach, we also found that inferred microbiome functions could be used to predict specialized host diets with reasonable accuracy. We detected a relationship between both host phylogeny and diet with respect to microbiome functional repertoires. Because many predicted functions could potentially fill nutritional gaps for bats with specialized diets, we considered pathways discriminating dietary niches as traits of the host and fit them to comparative phylogenetic models of evolution. Our results suggest that some, but not all, predicted microbiome functions may evolve toward adaptive optima and thus be visible to the forces of natural selection operating on hosts over evolutionary time. Conclusions Our results suggest that bats with specialized diets may partially rely on their gut microbes to fulfill or augment critical nutritional pathways, including essential amino acid synthesis, fatty acid biosynthesis, and the generation of cofactors and vitamins essential for proper nutrition. Our work adds to a growing body of literature suggesting that animal microbiomes are structured by a combination of ecological and evolutionary processes and sets the stage for future metagenomic and metabolic characterization of the bat microbiome to explore links between bacterial metabolism and host nutrition.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001414 ◽  
Author(s):  
Michael C. Grundler ◽  
Daniel L. Rabosky

The Cenozoic marked a period of dramatic ecological opportunity in Earth history due to the extinction of non-avian dinosaurs as well as to long-term physiographic changes that created new biogeographic theaters and new habitats. Snakes underwent massive ecological diversification during this period, repeatedly evolving novel dietary adaptations and prey preferences. The evolutionary tempo and mode of these trophic ecological changes remain virtually unknown, especially compared with co-radiating lineages of birds and mammals that are simultaneously predators and prey of snakes. Here, we assemble a dataset on snake diets (34,060 observations on the diets of 882 species) to investigate the history and dynamics of the multidimensional trophic niche during the global radiation of snakes. Our results show that per-lineage dietary niche breadths remained remarkably constant even as snakes diversified to occupy disparate outposts of dietary ecospace. Rapid increases in dietary diversity and complexity occurred in the early Cenozoic, and the overall rate of ecospace expansion has slowed through time, suggesting a potential response to ecological opportunity in the wake of the end-Cretaceous mass extinction. Explosive bursts of trophic innovation followed colonization of the Nearctic and Neotropical realms by a group of snakes that today comprises a majority of living snake diversity. Our results indicate that repeated transformational shifts in dietary ecology are important drivers of adaptive radiation in snakes and provide a framework for analyzing and visualizing the evolution of complex ecological phenotypes on phylogenetic trees.


2021 ◽  
Vol 118 (40) ◽  
pp. e2103470118
Author(s):  
Mario López-Pérez ◽  
Jane M. Jayakumar ◽  
Trudy-Ann Grant ◽  
Asier Zaragoza-Solas ◽  
Pedro J. Cabello-Yeves ◽  
...  

Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.


2021 ◽  
Author(s):  
Holger Eble ◽  
Michael Joswig ◽  
Lisa Lamberti ◽  
William B. Ludington

A longstanding goal of biology is to identify the key genes and species that critically impact evolution, ecology, and health. Yet biological interactions between genes (1, 2), species (3–6), and different environmental contexts (7–9) change the individual effects due to non-additive interactions, known as epistasis. In the fitness landscape concept, each gene/organism/environment is modeled as a separate biological dimension (10), yielding a high dimensional landscape, with epistasis adding local peaks and valleys to the landscape. Massive efforts have defined dense epistasis networks on a genome-wide scale (2), but these have mostly been limited to pairwise, or two-dimensional, interactions (11). Here we develop a new mathematical formalism that allows us to quantify interactions at high dimensionality in genetics and the microbiome. We then generate and also reanalyze combinatorically complete datasets (two genetic, two microbiome). In higher dimensions, we find that key genes (e.g. pykF) and species (e.g. Lactobacillus plantarum) distort the fitness landscape, changing the interactions for many other genes/species. These distortions can fracture a “smooth” landscape with one optimal fitness peak into a landscape with many local optima, regulating evolutionary or ecological diversification (12), which may explain how a probiotic bacterium can stabilize the gut microbiome.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yonghua Wu ◽  
Yi Yan ◽  
Yuanqin Zhao ◽  
Li Gu ◽  
Songbo Wang ◽  
...  

Abstract Background Core landbirds undergo adaptive radiation with different ecological niches, but the genomic bases that underlie their ecological diversification remain unclear. Results Here we used the genome-wide target enrichment sequencing of the genes related to vision, hearing, language, temperature sensation, beak shape, taste transduction, and carbohydrate, protein and fat digestion and absorption to examine the genomic bases underlying their ecological diversification. Our comparative molecular phyloecological analyses show that different core landbirds present adaptive enhancement in different aspects, and two general patterns emerge. First, all three raptorial birds (Accipitriformes, Strigiformes, and Falconiformes) show a convergent adaptive enhancement for fat digestion and absorption, while non-raptorial birds tend to exhibit a promoted capability for protein and carbohydrate digestion and absorption. Using this as a molecular marker, our results show relatively strong support for the raptorial lifestyle of the common ancestor of core landbirds, consequently suggesting a single origin of raptors, followed by two secondary losses of raptorial lifestyle within core landbirds. In addition to the dietary niche, we find at temporal niche that diurnal birds tend to exhibit an adaptive enhancement in bright-light vision, while nocturnal birds show an increased adaption in dim-light vision, in line with previous findings. Conclusions Our molecular phyloecological study reveals the genome-wide adaptive differentiations underlying the ecological diversification of core landbirds.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicolás Pelegrin ◽  
Kirk O. Winemiller ◽  
Laurie J. Vitt ◽  
Daniel B. Fitzgerald ◽  
Eric R. Pianka

Abstract Background Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. Results Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. Conclusions Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny.


Sign in / Sign up

Export Citation Format

Share Document