scholarly journals Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum

2007 ◽  
Vol 57 (10) ◽  
pp. 2284-2288 ◽  
Author(s):  
Seo-Youn Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

Two Gram-negative, milky-white-pigmented, motile, slightly curved rod-shaped bacterial isolates, UMS-37T and UMS-40, were isolated from rhizosphere soil of wild edible greens cultivated on Ulleung island, Korea, and their taxonomic positions were investigated by a polyphasic approach. They grew optimally at 25–30 °C and contained Q-8 as the predominant ubiquinone. The major cellular fatty acids (>10 % of total fatty acids) were C16 : 0, cyclo C17 : 0 and C16 : 1 ω7c and/oriso-C15 : 0 2-OH. The DNA G+C contents of the two isolates were 59.8 and 60.0 mol%. Isolates UMS-37T and UMS-40 exhibited no difference in their 16S rRNA gene sequences and possessed a mean DNA–DNA relatedness level of 94 %; they exhibited 16S rRNA gene sequence similarity levels of 96.8–98.2 % to the type strains of recognized Herbaspirillum species. Phylogenetic analyses based on 16S rRNA gene sequences showed that isolates UMS-37T and UMS-40 formed a distinct phylogenetic lineage within the genus Herbaspirillum. DNA–DNA relatedness levels between isolates UMS-37T and UMS-40 and the type strains of some phylogenetically related Herbaspirillum species were in the range 3–56 %. On the basis of differences in phenotypic properties and phylogenetic distinctiveness and genomic data, isolates UMS-37T and UMS-40 were classified in the genus Herbaspirillum within a novel species, for which the name Herbaspirillum rhizosphaerae sp. nov. is proposed, with the type strain UMS-37T (=KCTC 12558T =CIP 108917T).

2007 ◽  
Vol 57 (3) ◽  
pp. 588-593 ◽  
Author(s):  
Seo-Youn Jung ◽  
Soo-Young Lee ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

Two Gram-positive, non-motile, yellow-pigmented, slightly curved and rod-shaped bacterial strains, UMS-62T and UMS-101, were isolated from the rhizosphere of Allium victorialis var. platyphyllum, a variety of wild edible greens grown on Ulleung island, Korea. The taxonomic position of the strains was investigated by a polyphasic approach. Strains UMS-62T and UMS-101 grew optimally at 30 °C and at pH 6.5–7.5. The novel strains contained MK-11 and MK-12 as the predominant menaquinones and rhamnose, ribose and galactose as the major cell-wall sugars. The major cellular fatty acids (>10 % of the total fatty acids) were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The DNA G+C contents were 71.1–71.3 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strains UMS-62T and UMS-101 belong to the genus Agromyces. Strains UMS-62T and UMS-101 showed a 16S rRNA gene sequence similarity value of 99.9 % and a mean DNA–DNA relatedness level of 91.1 %. Similarity values between the 16S rRNA gene sequences of the two novel strains and the type strains of recognized Agromyces species ranged from 95.2 to 99.1 %. The levels of DNA–DNA relatedness between the two novel strains and the type strains of five phylogenetically related Agromyces species were in the range of 13.4 to 54.2 %. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain UMS-62T (=KCTC 19181T=JCM 13584T) and strain UMS-101 are classified as representing a novel species in the genus Agromyces, for which the name Agromyces allii sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3878-3884 ◽  
Author(s):  
Akira Nakamura

Strain 43PT was isolated as an l-glucose-utilizing bacterium from soil in Japan. Cells of the strain were Gram-stain-negative, aerobic and non-motile cocci. The 16S rRNA gene sequence of the strain showed high similarity to that of Paracoccus limosus (98.5 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed that this strain belongs to the genus Paracoccus. Strain 43PT contained Q-10 as the sole isoprenoid quinone. The major cellular fatty acids were C18 : 1ω7c or C18 : 1ω6c and C16 : 0, and C18 : 0, C18 : 1ω9c, C10 : 0 3-OH and summed feature 2 were detected as minor components. The DNA G+C content of strain 43PT was 64.1 mol%. Strain 43PT contained the major polar lipids phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminolipid and two unknown glycolipids. The DNA–DNA relatedness between strain 43PT and the six related type strains of the genus Paracoccus, including P. limosus, was below 23 %. Based on the chemotaxonomic and physiological data and the values of DNA–DNA relatedness, especially the ability to assimilate l-glucose, this strain should be classified as a representative of a novel species of the genus Paracoccus, for which the name Paracoccus laeviglucosivorans sp. nov. (type strain 43PT = JCM 30587T = DSM 100094T) is proposed.


2006 ◽  
Vol 56 (6) ◽  
pp. 1251-1255 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-5T, was isolated from seawater off Dokdo, Korea, and subjected to a polyphasic taxonomic study. It grew optimally at 25–28 °C and in the presence of 2 % (w/v) NaCl. Strain DSW-5T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected were phosphatidylethanolamine, three unidentified phospholipids and an amino-group-containing lipid. The DNA G+C content was 30.0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-5T was most closely related to the genus Polaribacter. Similarity values between the 16S rRNA gene sequences of strain DSW-5T and the type strains of recognized Polaribacter species were in the range 96.2–96.8 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DSW-5T (=KCTC 12392T=DSM 17204T) was classified in the genus Polaribacter as the type strain of a novel species, for which the name Polaribacter dokdonensis sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming bacterial strain, DS-44T, was isolated from soil from Dokdo in Korea, and its taxonomic position was investigated by using a polyphasic approach. It grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Strain DS-44T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 49·0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-44T belongs to the genus Algoriphagus of the phylum Bacteroidetes. Similarity values between the 16S rRNA gene sequences of strain DS-44T and those of the type strains of recognized Algoriphagus species were in the range 93·8–95·7 %, making it possible to categorize strain DS-44T as a species that is separate from previously described Algoriphagus species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DS-44T (=KCTC 12545T=CIP 108837T) was classified in the genus Algoriphagus as the type strain of a novel species, for which the name Algoriphagus terrigena sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2259-2261 ◽  
Author(s):  
Jongsik Chun ◽  
Jae-Hak Lee ◽  
Yoonyoung Jung ◽  
Myungjin Kim ◽  
Seil Kim ◽  
...  

16S rRNA gene sequences have been widely used for the identification of prokaryotes. However, the flood of sequences of non-type strains and the lack of a peer-reviewed database for 16S rRNA gene sequences of type strains have made routine identification of isolates difficult and labour-intensive. In the present study, we generated a database containing 16S rRNA gene sequences of all prokaryotic type strains. In addition, a web-based tool, named EzTaxon, for analysis of 16S rRNA gene sequences was constructed to achieve identification of isolates based on pairwise nucleotide similarity values and phylogenetic inference methods. The system developed provides users with a similarity-based search, multiple sequence alignment and various phylogenetic analyses. All of these functions together with the 16S rRNA gene sequence database of type strains can be successfully used for automated and reliable identification of prokaryotic isolates. The EzTaxon server is freely accessible over the Internet at http://www.eztaxon.org/


2005 ◽  
Vol 55 (5) ◽  
pp. 2051-2055 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Choong-Hwan Lee ◽  
Tae-Kwang Oh

Two Gram-negative, non-spore-forming, slightly halophilic gliding bacterial strains, DSW-8T and DSW-9, were isolated from sea water off a Korean island, Dokdo, of the East Sea, Korea, and their taxonomic position was investigated by a polyphasic study. The two strains grew optimally at 30 °C and in the presence of 2–3 % (w/v) NaCl. Strains DSW-8T and DSW-9 were characterized chemotaxonomically as containing MK-6 as the predominant menaquinone and iso-C17 : 0 3-OH, iso-C15 : 0 and iso-C15 : 1 as the major fatty acids. Major polar lipids were phosphatidylethanolamine, two unidentified phospholipids, an unidentified glycolipid and an amino group-containing lipid that was ninhydrin-positive. Their DNA G+C contents were 36·1 and 35·9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains DSW-8T and DSW-9 fell within the genus Maribacter of the family Flavobacteriaceae. Strains DSW-8T and DSW-9 exhibited no difference in their 16S rRNA gene sequences and possessed a mean DNA–DNA relatedness level of 89 %. Strains DSW-8T and DSW-9 exhibited 16S rRNA gene sequence similarity levels of 96·9–98·0 % to the type strains of the four recognized Maribacter species, but their low level of DNA–DNA relatedness with these species demonstrated that they constitute a distinct Maribacter species. On the basis of phenotypic and phylogenetic data and genetic distinctiveness, strains DSW-8T (=KCTC 12393T=DSM 17201T) and DSW-9 were classified in the genus Maribacter as members of a novel species, for which the name Maribacter dokdonensis sp. nov. is proposed.


2010 ◽  
Vol 60 (6) ◽  
pp. 1413-1417 ◽  
Author(s):  
Young Sun Lee ◽  
Dong-Heon Lee ◽  
Hyung-Yeel Kahng ◽  
Eun Mi Kim ◽  
Jae Sung Jung

A novel Gram-negative, aerobic, orange-pigmented bacterial strain, designated K7-2T, was isolated from seawater of Gangjin Bay, Korea, and subjected to a polyphasic taxonomic study. Strain K7-2T contained ubiquinone-10 (Q-10) as the predominant respiratory lipoquinone and did not produce bacteriochlorophyll a. Major fatty acids were C18 : 1 ω7c (51.4 %), iso-C15 : 0 2-OH and/or C16 : 1 ω7c (15.0 %) and C17 : 1 ω6c (8.8 %). Major polar lipids were phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content was 61.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain K7-2T formed a distinct phylogenetic lineage within the cluster comprising Erythrobacter strains. Similarities between the 16S rRNA gene sequences of strain K7-2T and the type strains of Erythrobacter species ranged from 95.0 % (Erythrobacter litoralis DSM 8509T) to 96.8 % (Erythrobacter citreus RE35F/1T). On the basis of polyphasic taxonomic data, strain K7-2T (=KCTC 22330T=JCM 15420T) is classified in a novel species within the genus Erythrobacter, for which the name Erythrobacter gangjinensis sp. nov. is proposed.


2005 ◽  
Vol 55 (4) ◽  
pp. 1635-1639 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

Two Gram-negative, rod-shaped, non-motile bacterial strains, MSS-170T and MSS-171, were isolated from sea water of a marine solar saltern of the Yellow Sea, Korea, and characterized by using a polyphasic taxonomic approach. The two isolates grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. They were characterized chemotaxonomically as having MK-7 as the predominant menaquinone and major amounts of fatty acids iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH. The DNA G+C content of each of the two strains was 42 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the two strains fall within the evolutionary radiation enclosed by the genus Algoriphagus. Strains MSS-170T and MSS-171 had identical 16S rRNA gene sequences and exhibited a mean DNA–DNA relatedness level of 93 %. The two strains exhibited 16S rRNA gene sequence similarity levels of 96·4–98·9 % with respect to the type strains of recognized Algoriphagus species. DNA–DNA relatedness levels between the two strains and the type strains of six Algoriphagus species were less than 35 %. On the basis of phenotypic data and phylogenetic and genetic distinctiveness, strains MSS-170T and MSS-171 were classified in the genus Algoriphagus as members of a novel species, for which the name Algoriphagus locisalis sp. nov. is proposed. The type strain is MSS-170T (=KCTC 12310T=JCM 12597T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1273-1277 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Soo-Yeon Park ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterial strain, designated DS-27T, was isolated from a soil sample, and its taxonomic position was investigated by using a polyphasic approach. The organism grew optimally at 30 °C and in the presence of 0–0.5 % (w/v) NaCl. Strain DS-27T contained MK-7 as the predominant menaquinone and iso-C15 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and iso-C17 : 0 3-OH as the major fatty acids. The DNA G+C content was 39.7 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-27T is most closely related to the genus Pedobacter of the family Sphingobacteriaceae. Similarity values between the 16S rRNA gene sequences of strain DS-27T and the type strains of recognized Pedobacter species ranged from 90.6 to 95.5 %. Differential phenotypic properties, together with the phylogenetic distinctiveness, were sufficient to categorize strain DS-27T as representing a species that is separate from recognized Pedobacter species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DS-27T (=KCTC 12559T=CIP 108922T) was classified in the genus Pedobacter as a member of a novel species, for which the name Pedobacter sandarakinus sp. nov. is proposed.


2007 ◽  
Vol 57 (7) ◽  
pp. 1386-1390 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Soon Ei Park ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

Two Gram-negative, motile, non-spore-forming bacterial strains, SW-353T and SW-369, were isolated from seawater from the East Sea, Korea, and their taxonomic positions were investigated by means of a polyphasic study. Strains SW-353T and SW-369 grew optimally at 30–37 °C and pH 7.0–8.0. Strains SW-353T and SW-369 contained Q-8 as the predominant ubiquinone and contained C16 : 0, C18 : 1 ω7c and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C contents were 50.1 and 50.5 mol%. Strains SW-353T and SW-369 exhibited no differences in their 16S rRNA gene sequences and showed a mean DNA–DNA relatedness level of 91 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SW-353T and SW-369 belong to the genus Rheinheimera. Similarity values between the 16S rRNA gene sequences of the two isolates and the type strains of the recognized Rheinheimera species were in the range 96.6–97.9 %. DNA–DNA relatedness data and differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrated that strains SW-353T and SW-369 differ from the recognized Rheinheimera species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strains SW-353T and SW-369 represent a novel species of the genus Rheinheimera, for which the name Rheinheimera aquimaris sp. nov. is proposed. The type strain is SW-353T (=KCTC 12840T=JCM 14331T).


Sign in / Sign up

Export Citation Format

Share Document