scholarly journals A Plasmonic Sensor Based on D-Shaped Dual-Core Microchannel Photonic Crystal Fiber

Author(s):  
Pibin Bing ◽  
Qing Liu ◽  
Guifang Wu ◽  
Sheng Yuan ◽  
Zhongyang Li ◽  
...  

Abstract In this paper, a dual-core microchannel-based fiber sensor is studied by using finite element method in the visible and near-infrared bands. Plasmonic material gold (Au) is deposited in microchannel to generate the surface plasmon resonance (SPR) effect, so that sensor can detect the change in RI of its surrounding analyte. Simulation results show that the maximum wavelength sensitivity and resolution are 33600nm/RIU and 2.97×10−6RIU for y polarization in the RI range of 1.33 to 1.44, respectively. The highest figure of merit (FOM) of the sensor is 961 for y polarization. In addition, we study the effects brought by the structural changes of the fiber sensor, and the results show that the design of “microchannel coating” dramatically improves the refractive index detection ability of the sensor. The D-shaped dual-core microchannel-based photonic crystal fiber sensor proposed in this paper has a simple structure, low manufacturing complexity, and high sensitivity. Combined with external sensing technology, this sensor has great application potential in the fields of biotechnology, medical diagnosis, and environmental protection.

2021 ◽  
Author(s):  
vijayalakshmi Dhinakaran ◽  
C.T. Manimegalai ◽  
Natesan Ayyanar ◽  
Truong Khang Nguyen ◽  
K. Kalimuthu

Abstract Platinum Diselenide, PtSe2 is becoming highly trending owing to its fascinating optoelectronic, thermoelectric and semiconductor properties. They are non-toxic, chemically inert and allow high biomolecule absorption which makes them highly applicable in sensors to boost the sensing performance. Here, we propose Surface Plasmon Resonance (SPR) based Photonic Crystal Fiber (PCF) sensor for enhanced refractive index sensing at mid infrared wavelengths. In order to achieve this, tri-path PCF coated with hybrid layer of gold/PtSe2 which allows light to travel freely through the cladding and interact with the plasmonic material to create strong coupling effect. Finite Element Method is used for numerical examination and investigation of the sensing performance for the designed tri-path sensor. The optimized proposed sensor exhibits maximum wavelength sensitivity of 42,000 nm/RIU and maximum wavelength resolution of 2.4 x 10-6 within the analyte range from 1.33 to 1.38, which almost covers the unknown analytes of chemical, bio and gas. Further, we achieve very low loss and unique design to accomplish high sensitivity which makes it applicable to be a future candidate in various sensing applications.


2021 ◽  
Author(s):  
Bahar Meshginqalam ◽  
Jamal Barvestani

Abstract A highly sensitive D-shaped photonic crystal fiber sensor with circular lattice is proposed for external plasmonic sensing. The proposed design of plasmonic material in a D-shaped form effectively facilitates the excitation of surface plasmons and enhances the sensor performance. As a comparative study, two different plasmonic materials, gold and silver, are applied D-shapely on the fiber and the proposed sensor performance is numerically investigated and evaluated. Moreover, the optimized structural parameters such as air-hole diameters and the thickness of silver and gold layers are selected via simulation results which cause the highest sensitivity of 40000nm/RIU for the gold coated fiber using the wavelength interrogation method. Furthermore, the maximum figure of merit can reach 621.50RIU-1. Analytes with the refractive indices ranging from 1.34 to 1.39 can be detected by double-loss peak that is a more reliable method of simultaneous detection and verification of sensing characteristics. Due to its promising results, the proposed sensor can be widely useful in the area of chemical and biological sensing.


2021 ◽  
Author(s):  
Zhenkai Fan ◽  
Jianye Qin ◽  
Shichao Chu ◽  
Junling Gao

Abstract A high sensitivity near-infrared photonic crystal fiber (PCF) refractive index sensor based on surface plasmon resonance (SPR) is proposed in this paper. The sensing performance of the PCF refractive index sensor is calculated and analyzed by using the finite element method (FEM). The coated metal material selects for chemically stable gold, which is used to induce SPR. The resonant coupling will occurs when the phase matching condition is met between the surface plasmon polariton (SPP) mode and the fundamental mode. The influence of the diameter of the central hole and the thickness of the gold film on the resonance wavelength and the confinement loss was studied. Numerical results demonstrate that the average sensitivity of the sensor can reach to 3200nm/RIU, which can be used in the field of refractive index detecting.


Optik ◽  
2021 ◽  
pp. 168488
Author(s):  
Yanjun Zhang ◽  
Lizhi Wang ◽  
Pinggang Jia ◽  
Chengrui Zhai ◽  
Guowen An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document