scholarly journals Compare the Similarity between Two Quantum Images

Author(s):  
You-hang Liu ◽  
Zai-dong Qi ◽  
Qiang Liu

Abstract Comparing the similarity between digital images is an important subroutine in various image processing algorithms. In this study, we present three quantum algorithms for comparing the similarity between two quantum images. These algorithms apply to binary, grey and color images respectively. Without considering the image preparation, the proposed algorithms achieve exponential acceleration than the existing quantum and classical methods in complexity. At the end of this paper, an experiment based on the real quantum computer of IBMQ and simulations verify the effectiveness of the algorithms.

Author(s):  
Siriphan Jitprasithsiri ◽  
Hosin Lee ◽  
Robert G. Sorcic ◽  
Richard Johnston

This paper presents the recent efforts in developing an image processing algorithm for computing a unified pavement crack index for Salt Lake City. The pavement surface images were collected using a digital camera mounted on a van. Each image covers a pavement area of 2.13 m (7 ft) × 1.52 m (5 ft), taken at every 30-m (100-ft) station. The digital images were then transferred onto a 1-gigabyte hard disk from a set of memory cards each of which can store 21 digital images. Approximately 1,500 images are then transferred from the hard disk to a compact disc. The image-processing algorithm, based on a variable thresholding technique, was developed on a personal computer to automatically process pavement images. The image is divided into 140 smaller tiles, each tile consisting of 40 × 40 pixels. To measure the amount of cracking, a variable threshold value is computed based on the average gray value of each tile. The program then automatically counts the number of cracked tiles and computes a unified crack index for each pavement image. The crack indexes computed from the image-processing algorithms are compared against the manual rating procedure in this paper. The image-processing algorithms were applied to process more than 450 surveyed miles of Salt Lake City street network.


1986 ◽  
Vol 21 (9) ◽  
pp. S49
Author(s):  
K. Reagan ◽  
L. M. Boxt ◽  
R. H. Taus ◽  
W. Hanlon ◽  
M. F. Meyerovitz ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 5057-5062
Author(s):  
Aadithya Ravi ◽  
Easwara E.A. Moorthy ◽  
D. Vidya ◽  
G.Mahesh Kumar

Specific hardware solutions are always faster than programmable architectures. But dedicated architectures have the inherent disadvantage of inflexibility. Changes in the algorithm or extensions of the application are handled easily by programmable architectures. The approach discussed here involves a hardware-software co-design to optimize on performance and programmability. The architecture houses two SHARC processors to aid in parallelizing the image processing algorithms, and a reconfigurable FPGA which may be configured on the fly to execute any of the real-time algorithms as desired. The functional memory would consist of pre-designs (FPGA based) of certain objects, each of which could be used to configure an FPGA to perform a particular function.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Fast track article for IS&T International Symposium on Electronic Imaging 2020: Image Processing: Algorithms and Systems proceedings.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


Sign in / Sign up

Export Citation Format

Share Document