scholarly journals Geographically Masking Addresses to Study COVID-19 Clusters

Author(s):  
Walid Houfaf-Khoufaf ◽  
Guillaume Touya

Abstract Background: The spatio-temporal analysis of cases is a good way an epidemic, and the recent COVID-19 pandemic unfortunately generated a huge amount of data. But analysing this raw data, with for instance the address of the people who contracted COVID-19, raises some privacy issues, and geomasking is necessary topreserve both people privacy and the spatial accuracy required for analysis. This paper proposes dierent geomasking techniques adapted to this COVID-19 data.Methods: Different techniques are adapted from the literature, and tested on a synthetic dataset mimicking the COVID-19 spatio-temporal spreading in Paris and a more rural nearby region. Theses techniques are assessed in terms of k-anonymity and cluster preservation.Results: Three adapted geomasking techniques are proposed: aggregation, bimodal gaussian perturbation, and simulated crowding. All three can be useful in different use cases, but the bimodal gaussian perturbation is the overall best techniques, and the simulated crowding is the most promising one, provided some improvements are introduced to avoid points with a low k-anonymity.Conclusions: It is possible to use geomasking techniques on addresses of people who caught COVID-19, while preserving the important spatial patterns.

2009 ◽  
Vol 129 (10) ◽  
pp. 1778-1784
Author(s):  
Yasuaki Uehara ◽  
Keita Tanaka ◽  
Yoshinori Uchikawa ◽  
Bong-Soo Kim

2010 ◽  
Vol 17 (4) ◽  
pp. 770-775
Author(s):  
Ren YANG ◽  
Zhi-Yuan REN ◽  
Qian XU ◽  
Mei-Xia WANG

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 507 ◽  
Author(s):  
Iván Vizcaíno ◽  
Enrique Carrera ◽  
Margarita Sanromán-Junquera ◽  
Sergio Muñoz-Romero ◽  
José Luis Rojo-Álvarez ◽  
...  

GeoJournal ◽  
2021 ◽  
Author(s):  
R. Nasiri ◽  
S. Akbarpour ◽  
AR. Zali ◽  
N. Khodakarami ◽  
MH. Boochani ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 679
Author(s):  
Avi Bar-Massada

The Wildland Urban Interface (WUI) is where human settlements border or intermingle with undeveloped land, often with multiple detrimental consequences. Therefore, mapping the WUI is required in order to identify areas-at-risk. There are two main WUI mapping methods, the point-based approach and the zonal approach. Both differ in data requirements and may produce considerably different maps, yet they were never compared before. My objective was to systematically compare the point-based and the zonal-based WUI maps of California, and to test the efficacy of a new database of building locations in the context of WUI mapping. I assessed the spatial accuracy of the building database, and then compared the spatial patterns of WUI maps by estimating the effect of multiple ancillary variables on the amount of agreement between maps. I found that the building database is highly accurate and is suitable for WUI mapping. The point-based approach estimated a consistently larger WUI area across California compared to the zonal approach. The spatial correspondence between maps was low-to-moderate, and was significantly affected by building numbers and by their spatial arrangement. The discrepancy between WUI maps suggests that they are not directly comparable within and across landscapes, and that each WUI map should serve a distinct practical purpose.


2021 ◽  
Vol 144 (3-4) ◽  
pp. 1219-1231
Author(s):  
Oscar Kambombe ◽  
Cosmo Ngongondo ◽  
Levis Eneya ◽  
Maurice Monjerezi ◽  
Clement Boyce

Sign in / Sign up

Export Citation Format

Share Document