niche model
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 41)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Mahsa Pahlavan ◽  
Weikun Xiao ◽  
Flora Eun ◽  
Chang-Il Hwang ◽  
Reginald Hill

2021 ◽  
Vol 13 (21) ◽  
pp. 11667
Author(s):  
Ping He ◽  
Yu Gao ◽  
Longfei Guo ◽  
Tongtong Huo ◽  
Yuxin Li ◽  
...  

Since 2019, the novel coronavirus has spread rapidly worldwide, greatly affecting social stability and human health. Pandemic prevention has become China’s primary task in responding to the transmission of COVID-19. Risk mapping and the proposal and implementation of epidemic prevention measures emphasize many research efforts. In this study, we collected location information for confirmed COVID-19 cases in Beijing, Shenyang, Dalian, and Shijiazhuang from 5 October 2020 to 5 January 2021, and selected 15 environmental variables to construct a model that comprehensively considered the parameters affecting the outbreak and spread of COVID-19 epidemics. Annual average temperature, catering, medical facilities, and other variables were processed using ArcGIS 10.3 and classified into three groups, including natural environmental variables, positive socio-environmental variables, and benign socio-environmental variables. We modeled the epidemic risk distribution for each area using the MaxEnt model based on the case occurrence data and environmental variables in four regions, and evaluated the key environmental variables influencing the epidemic distribution. The results showed that medium-risk zones were mainly distributed in Changping and Shunyi in Beijing, while Huanggu District in Shenyang and the southern part of Jinzhou District and the eastern part of Ganjingzi District in Dalian also represented areas at moderate risk of epidemics. For Shijiazhuang, Xinle, Gaocheng and other places were key COVID-19 epidemic spread areas. The jackknife assessment results revealed that positive socio-environmental variables are the most important factors affecting the outbreak and spread of COVID-19. The average contribution rate of the seafood market was 21.12%, and this contribution reached as high as 61.3% in Shenyang. The comprehensive analysis showed that improved seafood market management, strengthened crowd control and information recording, industry-catered specifications, and well-trained employees have become urgently needed prevention strategies in different regions. The comprehensive analysis indicated that the niche model could be used to classify the epidemic risk and propose prevention and control strategies when combined with the assessment results of the jackknife test, thus providing a theoretical basis and information support for suppressing the spread of COVID-19 epidemics.


Author(s):  
Bernhard Hausdorf ◽  
Matt Parr ◽  
Laura J. Shappell ◽  
Jens Oldeland ◽  
David G. Robinson

AbstractWe report the introduction of the central and eastern European helicid land snail Caucasotachea vindobonensis in North America. It was first recorded from Rensselaer County in the state of New York in 2015 by a community scientist. From 2016 to 2020, 14 additional occurrences in Rensselaer County, neighbouring Albany County and an imprecisely localized site in the Adirondack Mountains were recorded by community scientists. In 2020, the species was newly recorded at two sites in Schoharie County, NY, and at three sites in Québec, one of them approximately 700 km to the north of the initial record. Partial mitochondrial cox1 sequences from Rensselaer differ from an eastern Ukrainian haplotype only in a single substitution. Therefore, a Ukrainian origin for this introduction is likely, although not certain: the Rensselaer haplotype also differs in only two substitutions from a more widespread haplotype known from Ukraine, Hungary, Slovakia, Czechia, Serbia, and Bulgaria. An environmental niche model of the species based on occurrence data from central and eastern Europe indicated that a large region from the northern east coast to the midwestern United States is suitable for C. vindobonensis. The Canadian occurrences may indicate that the North American lineage is able to survive colder winters than predicted by the environmental niche model. Caucasotachea vindobonensis is not listed as a pest in Europe and it is unlikely to become an agricultural pest in North America as it prefers rotting plant material over living parts of plants, but its impact on native organisms can hardly be predicted.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Oscar Hinojosa-Espinosa ◽  
Daniel Potter ◽  
Mario Ishiki ◽  
Enrique Ortiz ◽  
José Luis Villaseñor

Background: Dichrocephala is an Old-World genus of the tribe Astereae within the family Asteraceae. One species, D. integrifolia, has been recently reported as introduced in the New World from a pair of collections from Guatemala. During field work in the state of Chiapas in southern Mexico, the species was found and collected. This is the first record of both the genus and species in Mexico and the second record for these taxa in the Americas. Question: Can D. integrifolia occur in more areas in the New World besides those known from Guatemala and Chiapas? Studied species: Dichrocephala integrifolia Study site and dates: Mexico, Central America, and the Caribbean. Methods: An ecological niche model was made and it was projected into the New World. Results: The ecological niche model predicts the records of D. integrifolia in the New World in addition to other ecologically suitable areas, mostly in pine-oak forests in Mexico and Central America and zones with humid mountain and pine forest in the Caribbean. Moreover, a morphological description and illustrations of the species are provided to help with its identification. Conclusions: It is desirable to avoid the further spreading of D. integrifolia in the New World. Although this species is not considered as invasive, it seems to have a high dispersal potential and the ecological niche modelling indicates larger regions in the Americas that might be affected.


Sign in / Sign up

Export Citation Format

Share Document