scholarly journals Radiation Safety of Current European Practices of Therapeutic Nuclear Medicine: Survey Results from 20 HERCA Countries

Author(s):  
Ritva Bly

Abstract Purpose: New radiotherapies in nuclear medicine have been introduced in Europe during recent years. Moreover, radiation safety of therapeutic nuclear medicine should be in line with the latest European Council Directive on Basic Safety Standards (BSSD) (2013/59/Euratom). The purpose of this study was to acquire up-to-date information on nuclear medicine treatments in Europe and on the implementation of the requirements of the BSSD in HERCA (Heads of the European Radiological protection Competent Authorities) member states. Methods: An electronic questionnaire was distributed to competent authorities of 32 HERCA member states. The questionnaire addressed 33 explicitly considered treatments including 13 different radionuclides, and for each treatment, a similar set of questions was included. Questions covered the use of treatments, hospitalization of patients and waste management related to therapeutic nuclear medicine involving other radionuclides than 131 I, justification of treatments, individual treatment planning, involvement of a medical physics expert (MPE) and radiation protection instructions related to release of the patient.Results: Responses were obtained from 20 HERCA countries. All countries used 131 I-NaI for benign thyroid diseases and thyroid ablation of adults. 223 RaCl2 (Xofigo®) for bone metastases, 177 Lusomatostatin analogues for neuroendocrine tumors and 177 Lu-PSMA for castration resistant prostate cancer (PC) and PC-metastases were used in 90%, 65% and 55% of countries respectively. Only a few countries had treatment specific criteria for hospitalization and waste management for new treatments. Requirements for justification of new therapies were in place in almost all countries. Individual treatment planning was required for all therapies in 55% and for some therapies in 28% of the responding countries. Implementation of the requirement for MPEs to be closely involved in nuclear medicine practices varied to a great extend among countries. Almost all countries answered that some radiation protection instructions existed for patients released after other than 131 I treatment, however in a very few countries had specific guidelines been developed.Conclusions: There is a wide variation in therapeutic use of nuclear medicine across Europe, but there is an increasing tendency towards these types of treatments. Furthermore, the implementation of the BSSD on the involvement of MPEs and individual treatment planning including dosimetry differs from country to country. Requirements on justification are in place.

2010 ◽  
Author(s):  
A. P. Stefanoyiannis ◽  
J. Gerogiannis ◽  
Angelos Angelopoulos ◽  
Takis Fildisis

2019 ◽  
Vol 4 (2) ◽  

In nuclear medicine, radiopharmaceuticals are administered to the patient either for the production of diagnostic images or with the intention to treat using the emitted radiation from the radiopharmaceutical. The increased use of PET-imaging causes a need for new planning of radiation protection. In radionuclide therapy, the activities are higher and the radionuclides used are often different from those used in diagnostic nuclear medicine and constitute a greater radiation protection problem. In both diagnostic and therapeutic nuclear medicine, the patient becomes a source of radiation not only for him/herself but also for staff, caregivers and the general public. All categories of staff members involved in nuclear medicine must have good knowledge of radiation protection. This is vital for patient safety as well as for the staff's own security, for caregivers and the general public.


2020 ◽  
Vol 6 (2) ◽  
pp. 71-89
Author(s):  
Yasemin Parlak ◽  
Bağnu Uysal ◽  
F. Suna Kıraç ◽  
Bilal Kovan ◽  
Mustafa Demir ◽  
...  

Author(s):  
Erin M. Maddy ◽  
Kevin Abnet ◽  
Geoffrey Scriver ◽  
Mrinal Shukla

Exposure to ionizing radiation is increasing in modern anesthesia practice, due to both the number of procedures facilitated and the expanding role of imaging in surgical practice. International Commission on Radiological Protection (ICRP) recommends that physicians who assist with radiation procedures be educated on the basics of radiation including units, effects of radiation exposure, and radiation protection for both providers and patients. This chapter will mirror the recommendations of the ICRP and include an introduction to radiation production, terminology, units, effects on the human body, dose limits, best practices for radiation protection, and safety infrastructure.


Author(s):  
M. M. Salgado ◽  
J. C. Beni´tez ◽  
R. Pernas ◽  
N. Gonza´lez

The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in the License’s conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement.


2019 ◽  
Vol 33 (11) ◽  
pp. 787-805 ◽  
Author(s):  
Makoto Hosono ◽  
Hideharu Ikebuchi ◽  
Seigo Kinuya ◽  
Sachiko Yanagida ◽  
Yoshihide Nakamura ◽  
...  

Abstract We present the guideline for use of yttrium-90-labeled anti-P-cadherin antibody injection for radionuclide therapy in clinical trials on the basis of radiation safety issues in Japan. This guideline was prepared by a study supported by the Ministry of Health, Labour, and Welfare, and approved by the Japanese Society of Nuclear Medicine. Treatment using yttrium-90-labeled anti-P-cadherin antibody injection in Japan should be carried out according to this guideline. Although this guideline is applied in Japan, the issues for radiation protection shown here are considered internationally useful as well. Only the original Japanese version is the formal document.


2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Jean Koch

In Israel, a single regulatory body for radiation protection does not exist. Instead, its responsibilities and functions are shared between five government ministries and agencies. Accordingly, the existing legal framework for radiation safety is of a very heterogeneous nature. It is made of laws, acts, orders, and regulations enacted during different periods, according to different principles. Moreover, some of the provisions of those legal instruments are obsolete or quote obsolete documents. The Standard for Radiation Protection (SRP) of the Israel Atomic Energy Commission (IAEC) was recently updated on the basis of the latest version of the International Atomic Energy Agency (IAEA) International Basic Safety Standards (BSS). It is proposed that the SRP of the IAEC serves as a model for a comprehensive framework law that would be structured in a similar manner, i.e., a division into three parts according to the three different types of exposure situation (planned, emergency, existing) defined by the International Commission on Radiological Protection (ICRP) and a subdivision of each part according to relevant exposure categories (occupational, public, medical). The adoption of such a structure would ensure that no aspect of radiation protection is left untreated.


2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


2021 ◽  
Vol 193 (1) ◽  
pp. 43-54
Author(s):  
Yasuda Mitsuyoshi ◽  
Funada Tomoya ◽  
Sato Hisaya ◽  
Kato Kyoichi

Abstract As chest x rays involve risks of patients falling, radiologic technologists (technologists) commonly assist patients, and as the assistance takes place near the patients, the eye lenses of the technologists are exposed to radiation. The recommendations of the International Commission on Radiological Protection suggest that the risk of developing cataracts due to lens exposure is high, and this makes it necessary to reduce and minimize the exposure. The present study investigated the positions of technologists assisting patients that will minimize exposure of the eye lens to radiation. The results showed that it is possible to reduce the exposure by assisting from the following positions: 50% at the sides rather than diagonally behind, 10% at the right side of the patient rather than the left and 40% at 250 mm away from the patient. The maximum reduction with radiation protection glasses was 54% with 0.07 mmPb and 72% with 0.88 mmPb.


2021 ◽  
Author(s):  
Sanggam Ramantisan ◽  
◽  
Siti Akbari Pandaningrum ◽  
Suwardi Suwardi ◽  
Syarifudin Syarifudin ◽  
...  

Ionizing radiation safety in the medical field, referred to as radiation safety, is an action taken to protect patients, workers, community members, and the environment from the dangers of radiation. One of the efforts to achieve this is by increasing the qualifications of radiation workers in understanding and implementing radiation protection and safety through ionizing radiation safety and security training initiated by the Radiation Protection Officer (PPR) team at Dr. RSUP. Kariadi Semarang. During the current pandemic, implemented the training by modifying what was previously done using face-to-face and field practice into online delivery of material and making videos as a substitute for field practice. As a result, these activities can run well and smoothly. The impression from the training participants stated that this training was beneficial and should be done regularly. Keywords: training, ionizing radiation, radiation protection officer


Sign in / Sign up

Export Citation Format

Share Document